
THE MISDSVS GUARTERLV

In this issue:
• UNDATE reverses DATECONV by L M Garcia-Barro

• 80x86 assembly language by Phil Oliver
• Converting LDOS filters to LS-DOS

• Previewing output from SCRIPSIT
• Announcing PRO-WAM Release 2

• Learn MORSE with CODE/BAS

\ I

1~17·---...
___ }'

Volume I, Issue Iv Spring 1987 $10

THE MISDSVS BUARTERLV

Volume I, Issue iv

Table of Contents
The Blurb ••••
Announcing New Products

RATFOR-86™ and RATFOR-M4™ • • • •••
PRO-WAM™ Release 2 ••••••••••••

Letters to the Editor

LDOS™ Information.

LS-DOSm Information. . .
The LSI Column •
LSI Patches to LS-DOS™ 6.3

MS-DOS™ Information
Applications for the User

2

6
9

13

• • 20

• • • 32
•• 44

• • • 45

• 47

UNDATE by Luis M. Garcia-Barro ••••.•• 56
STRIP/BAS by James K. Beard, Ph.D. • • • • • 59
MORSE code from a Model 4 • • • • • ••• 60
Data Indexing using BASIC by Paul Wade ••••• 62
Previewing output with SCRIPSIT by Roy Soltoff. 62

The Programmer's Corner
Using I/0 Redirection with MC by M. Johnston •• 64
Writing filters for LS-DOS by Roy Soltoff ••• 64
8086 Assembly Language by Phil Oliver ••••• 71

MISOSYS Products' Tidbits • • • • • • • • 78
EnhComp - BASIC compiler. • ••••• 80
MC - C compiler • • • • • ••••• 83
PRO-WAM - Window and Application Manager •••• 96

The PATCH Corner ••• 96

Our Compuserve Forum 103

Copyright C 1987 by MISOSYS, Inc., All rights reserved
PO Box 239, Sterling, VA, 22170-0239

703-450-4181

Spring 1987

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

The Blurb
Speaking about The Quarterly •••

Well folks, all kidding aside, this is the
Spring 1987 issue of THE MISOSYS QUARTERLY. I
know, many of you are boiling in the hot sun
by the pool. Some of you are stocking up on
cord wood (see "Letters"). Actually, it should
get to you about three months since the last
issue. Unfortunately, I haven't been able to
compress the time between issues to catch up
on the timing of the QUARTERLY. I do hope to
shorten the time until the next issue by a few
weeks so you're not gethering in the pumkins
while you read the Sunnner issue. Rest assured,
regardless of the timing, a "year's" worth of
subscriptions will get you four issues.

This Spring 1987 issue marks the completion of
Volume I; next issue starts Volume II.
Sometime in the near future, we will be
mailing out renewal notices to those of you
who have subscribed for the first issue (i.e.
if your subscription gets expired after this
I.iv issue). Please wait for your statement;
we are going to process renewals in only a few
inputs to our order entry system. That's to
avoid wasting Brenda's time. All we really
have to get accomplished is to alter your
expiration field in the data base and reflect
the total dollar value of renewal transactions
in the invoice system (monthly revenue figures
here are processed electronically).

As I write this Blurb (June 18th), we have no
I.i's left, we have 15 I.ii's left, and 105
I.iii's left. Since our last print run was
800, that gives us about 700 subscribers. The
actual count in the data base is 717 out of
18066; this means we have over eighteen
thousand names in our database 717 are
subscribers of THE MISOSYS QUARTERLY. TMQ
I.iii was mailed to 658 subscribers; thus, we
have picked up about 59 new readers since our
last issue. The rate of renewals will let us
know if we're doing a good job with TMQ.

This is another full issue. In fact, again we
had to defer some material. I had eight pages
of "The Hardware Corner" which must wait until
next issue. I also had to forgo "Our
Compuserve Forum". Rich's stuff on statO and
rm are likewise postponed. Some of the
correspondance which I had selected for
QUARTERLY insertion also is postponed. But
that's good, it means I have a partial box
full of material for starting Volume II. I'll
still welcome your input, though. The more
contributions I get from readers, the less

time I have to spend working up articles, and
the more time I can spend on programming.

Now speaking of TMQ, we felt that the content
was so valuable, we started paying for address
corrections. If you're a First Class Mail
subscriber, you may have noticed the phrase,
"Forwarding and Address Correction Requested".
If you have moved, you'll still get your
QUARTERLY but then we have to pay $0.40 to
find out that you moved. For Bulk Mail
subscribers, the phrase, "Address Correction
Requested, Forwarding and Return Postage
Guaranteed" wi 11 cost us a lot more. To begin
with, forwarding is handled according to First
Class rates and we still have to pay the
address correction fee. Now here is the
kicker! Although your change of address filed
with the Post Office is supposed to be good
for one year, we have been informed that the
COA is valid only for THREE MONTHS for
magazines! We have gotten a few back already
noting "Forwarding time expired". This hits on
us for anywhere from $1.18 to over $3.00
(which Brenda refused to pay!). So please, if
you move, don't forget your subscriptions and
get us a change of address.

The PROGRAMMER'S GUIDE now available

We recently acquired a two-color high quality
copier. This gives us the capability of
producing in-house small qdantities of printed
matter. We have decided to use this facility
to make available on~e again THE PROGRAMMER'S
GUIDE TO LDOS/TRSDOS VERSION 6. Also, to
assist in the "binding" operation, we acquired
a GBC "Image-Maker 2000". This is the little
machine which binds documents with those
plastic finger thingamajigs. We've produced a
few GUIDES already and I like the result. The
binding allows pages to turn freely, lets the
book lie flat when open, and is not much of a
burden to install. So if you are still looking
for a copy of this valuable book, we got it.
The price, of course, has gone up from when we
used to get it offset printed. As I stated in
TMQ I. i (The Blurb), offset printing of "The
Guide" was only economical when the print run
was at least 500. At a print run of one per,
we will be selling The Guide for $25 plus $3
S&H (US).

Projects at MISOSYS, Inc.

Last issue I reported on the imminence of
three products: RATFOR-M4, RATFOR-86, and
DSM86. Well the first two made it out.
Unfortunately, the free-lancer doing our port
of DSM4 over to MS-DOS got tied up with other
work forcing us to bring DSM86 in-house. It

The BLURB - 2 - The BLURB

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

will be delayed since there are a few other
projects going on,

This issue announces PRO-WAM Release 2. By the
time you read this, it will have been in beta
test for about two months getting a good
shakedown. Also, as soon as I put the wraps on
this QUARTERLY, I'll start the massive rewrite
to the PRO-WAM manual, I am quite proud of
this new release; it has virtually everything
that our users have been requesting plus lots
more. Of course, due to the state of the 8-bit
marketplace, I think this will be the last
release of PRO-WAM. That's why we wanted to
put so much into it.

With the release of new 8-bit chips (the
Hitachi HD64180 and Zilog Z280), we want to
explore the feasibility of revamping MRAS to
support the extended instructions of these two
processors, We may be able to report something
next issue,

We also want to spend some time later this
year grooming Little Brother (LB and LB86). I
have a personal commitment to support a co
existance of LB and PRO-WAM, Currently, LB
cannot run with the reduced memory available
when PRO-WAM is loaded. That may be due to the
file buffering requirements imposed by the
Aztec C compiler used to compile the Model 4
version of LB. We hope to explore a redo of
the LB source to compile with MC.

From time to time we get program submissions
for consideration as potential MISOSYS
products. Currently under evaluation is a new
interactive game targeted for the Model 4.
This MegAdventure package titled "LAIR OF THE
DRAGON" has been submitted by David Goben.
Preliminary feedback from my evaluators
reveals great potential for this package. I'll
probably have more to report in TMQ II.i as
some decisions will be made during the next
few months. If we go ahead with this package,
an MS-DOS version will be developed, as well,

I am looking over a fast backup and restore
utility for MS-DOS. Even though the market is
crowded with such utilities, there's room for
more. When you move into a crowded market, the
trick is to make your product a little bit
better than the rest.

Which brings up the topic of program
submissions. Yes, MISOSYS does publish
products which have originated from
independent authors (like many of our readers
are). After all, when MISOSYS started out nine
years ago, we were an independent - and we
still are, we're just better known due to

perseverance and a quest for doing the right
thing. We are always open to program
submissions. But please, I don't think we need
any more Model III software. Even for a Model
4, I have my doubts as to the viability of
marketing a new Model 4 program. On the other
hand, a program running on a 4 which is easily
ported to MS-DOS is another issue, At this
point, we have not considered addressing the
Apple, Atari, or Amiga markets (nor UNIX,
either). So products for those markets won't
be viable here, If you have something you
think we should see, either call or write
first - no need to send your package. Our
primary consideration is for products in the
MS-DOS arena.

Focus on Public Domain

We continue to get requests from folks
(primarily overse1as) wanting to obtain files
which have been placed into the download
section of our Compuserve forum. Since we have
had no takers for our plea of assistance in
this regard, I am forced to take the bull by
the horns. Note that my function as forum
manager gives me no right to download files en
masse and begin distributing them elsewhere. I
also have no intentions to selectively obtain
files and then make them available elsewhere.
MISOSYS has no time to perform a service of
distributing public domain software files. On
the other hand, • we could probably bend to
organize disks of PD software to be made
available for a fee similar to what Montezuma
Micro is doing for CP/M programs.

Considering these issues, we will start to
build a library of public domain software for
the TRS-80. The programs must be submitted via
floppy disk directly to us by mail from the
original author; we will not take submissions
via Compuserve. Please use LOOS or LS-DOS
formats (40 cylinder, ODEN, 1 or 2 sides). We
expect pricing per disk to be similar to DISK
NOTES, although we will listen to your input
on pricing. Our next issue will have the
results of your input.

No Model I LDOS 5.3

Our last issue of TMQ anticipated the decision
recently made that there WILL NOT be a 5.3
release of LOOS for the Model I. We are
extremely disappointed with the sales volume
of the Model III LOOS 5.3 Upgrade Kit.
Extrapolating potential Model I sales results
based on the ratio of actual Model III sales
to the entire Model III/4 marketplace
precludes any justification for a Model I
release of 5.3. However, before the end of the

The BLURB - 3 - The BLURB

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

set of patches
users. These
Directory file

year we will be making public a
to accomodate Model I LDOS
patches will de-activate the
dating and extend the DATE$
dates through 1999.

dating to accept

Surplus hardware for aale

Brenda asked me not long ago, "When are you
going to get rid of all that extra hardware
stored in the back room?" I'm not sure she
used the term ''hardware", if you get my drift.
When MISOSYS picked up the operation LSC used
to run out in Milwaukee, we acquired what can
be best called an excess of computer equipment
(not to mention an excess of office
furniture). George Carlin refers to this as
"stuff". Brenda's right, it's time to see if
anyone has a need for some of this stuff - at
a price, of course. Here's a list of what we
sorted out so far as extra. Prices shown
include ground shipment via UPS. Sorty, but
this stuff can only be shipped . to the
continental US only. Everything is used and
sold as is. All equipment was in working order
when removed from service.

Qty Item Price

4 TEC FB-202 40T floppy $25
3 Texas Peripherals floppy $25
1 Shugart Assoc 400 floppy $25
2 BASF 6106 2/3 ht floppy $25
1 Percom 20ms floppy, "jaws" $25
2 MPI B-51 floppy $25
7 floppy case & power supply $10
1 MAX-80, 128K keyboard $200
1 BMC Monitor, BM-12A $40
1 16K Model I complete, 1/c $100
1 32K Model I E/I $50

All floppies noted above are bare drive. We
have other stuff around here. Like a Line
Printer III, an MX-100, a DP-800, some 5-meg
hard drive bubbles, a Lobo WINS Smeg drive,
etc. We also have a ton of 8" floppies - used.

MISOSYS closed in August

Here's an important announcement. No, we won't
be closed the month of August. This business
doesn't pay THAT well. It just happens to be
time for the Soltoffs to enjoy a week off down
at the beach. Actually, I should say a week at
the shore since I come from Philly and that's
what they say there. We will be closed from
August 8th through August 16th. That's the
second full week in August including
surrounding weekends. We expect to be
somewhere in Virginia Beach, depending on our
guess as to what constitutes an ideal spot for

the family. No, we won't be there the whole
time, but don't count on us answering our
phone. And don't worry if mail orders are
delayed - we'll catch up when we get back.
Summertime has been a little slow, anyway.

Contents of DISK NOTES 8

Each issue of THE MISOSYS QUARTERLY contains
program listings, patch listings, and other
references to files we have placed on DISK
NOTES. Some people enjoy typing in long
listings. Sometimes you may have need for only
a short patch. If you want to obtain all of
the patches and all of the listings, you may
conveniently purchase a copy of DISK NOTES.

There is a cost involved. DISK NOTES is priced
at $10 PLUS S&H. The S&H charges are $2 for
US, $3 Canada and Mexico, $6 elsewhere. If you
purchase the corresponding DISK NOTES with the
coupon which accompanies this TMQ issue, you

.- can save $2.50; the cost then being only $7.50
· + S&H. Here' s what' s on Disk NOTES 8:

LSIFIX/TXT
INSTRUCT/TXT
LDOSINFO/DAT
LDOSINFO/TXT
LIBENTRY/BAS
LIBENTRY/TBA
LI BREAD /BAS
LI BREAD/TBA
UNDATE/CMD
PGPAWSS/ASM
UNDATE/SRC
PGPAWS6/ASM
UNDATE/DOC
MPATCH/FIX
SUPERLOG/JCL
STRIP/BAS
CODE/TXT
SOUND/BAS
FIXES8/TXT

QUARTERLY Coupon

- Fixes for LS-DOS 6.3
- See APPLICATIONS
- ditto
- ditto
- ditto
- ditto
- ditto
- ditto
- opposite of DATECONV
- source to PAGEPAWS, v5
- source to UNDATE/CMD
- source to PAGEPAWS, v6
- docs for UNDATE
- Model 4 SS patch
- Just what it says
- utility to strip 1 byte
- source to code program
- SOUND for PRO-EnhComp
- The Patch Corner

Don't forget the coupon which accompanies this
issue. It qualifies you for a $2.50 savings on
DISK NOTES 8. We have assemblers on sale
(EDAS, PRO-CREATE, ED/ASM-86). We have data
base managers on sale (LB, LB86). And here's a
great price on The Basic Answer. Remember, you
must return the coupon to qualify. Please
select only one sale item per coupon, and
gosh, don't forget to include appropriate S&H
fees. Some folks just never read.

The BLURB - 4 - The BLURB

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Family Update

Here's where the folks who are not interested
in my family can stop reading and proceed to
the NEW PRODUCTS section. Judging by the mail
I received in response to last issue's Letters
to the Editor, everybody wants to hear more
about the family. Gee, maybe I'll try to get a
family portrait in one of these issues.

Now although it has only been three months
since I wrote the last colulllll, Stacey appears
to have aged about 3 years. I guess it's just
due to her getting out from under our thumbs
and starting to play with the other kids in
the cul-de-sac. That's a big leap in
independence. I did attend her "graduation"
from 3-year-old pre-school; however, the class
picnic which I was also scheduled to go on was
rained out.

Speaking of Brenda, get this! She's going to
start driving the pre-school van for the
morning and noon trips taking the pre-school
kids to and from school. Brenda's a late
sleeper - she doesn't like to get up before 8.
It's a good thing we work close by. You see, I
can talk about her now. Brenda, Stacey, and
Stefanie are down in Florida visiting her
family. Brenda reports that the kids are
coming along fine in the swimming pool.
They're even forgoing their water wings.
That's a big improvement over last year. We
were out a few times at the pool in our
community over Memorial day weekend but the
water wasn't too warm yet. It's quite a bit
warmer in Florida - especially down in Miami.

I wou Id have liked to go to Flo rid a, too;
except then you wouldn't have gotten this
QUARTERLY for at least another few weeks.
Beside~ had other work which had to get

Stacey turned four earlier this month. N~~~en\you run a small company like we do,
somewhere I read that after the firs.t;.---few ~•1;:ee'ii{}y\\hard to take off. The week in r , · ,-v
birthdays - which are usually reser~e~f'Of Jg s't1will be the first week I have ever
immediate f~mily children a:e entit\letl~~ _tl&(ltkri-;No.£1£, ~..Juring :he . sunnner months s~nce
have at thei: party as many friends as\theit,dfl~-was a full time Job. That's been since
age. According to that rule, we should\~~~!. In fact, the only week taken off has
had four other kids. Unfortunately, \.-.i:1:'s always been the week between Christmas and New
difficult to narrow down commitments. Since Years. Now when I worked for AT&T, I had three
both Brenda's family and my family live far weeks vacation, a week of personal days, and a
from here, birthday parties for the kids have week of Management days. I never knew what to
meant inviting some friends we have known for do with all of that time. It's different now.
years. They too have children of Stacey's and
Stefanie's age (5 in all). That would put us
over the top. But we still had to invite a few
of Stacey's classmates. So with an ensemble of
about 10 kids and, say, 8 or so adults, Stacey
celebrated her fourth. At least I now know why
parents start letting their kids stay at
birthday parties by themselves when they get
to be four. We all had fun, but the pace was
non-stop.

Stefanie has made some big advances in her
selection of foods. She still won't even taste
orange juice and Brenda growing up in
Florida. But Stef has begun accepting meat. I
have gotten Stacey turned on to soups. She'll
even scoop up the juice left over from the
vegetable serving bowl calling that her
"soup". Stacey even tried to get Stef to try
some "real" soup, but Stef' s not quite up to
that. Stefanie finished up her "fun for two
year olds" class. In the Fall (you know, when
I get out the Summer QUARTERLY), Stefanie will
start into the same class that Stacey just
left. Both of my girls wi 11 be in "school" on
Tuesday, Wednesday, and Thursday mornings.
What will Brenda and I ever do?

The most amazing thing about parenthood which
has really struck home to me is the strong
perception that I am reacting just like my
parents reacted. I'm talking (read as
"yelling") like my father talked. I'm thinking
like my father thought. Perhaps I am more
aware of that because I have the maturity
which comes from being 44 years of age and I
didn't have children of my own until I was 40.
Or perhaps this is just a natural phenomenon.

Doing some vegetable gardening again this
year. I'm trying some new "crops"; having
planted some peas, green beans, lima beans,
cukes, cantelopes, pumkins, and the proverbial
tomatoes. Don't misunderstand, it's just a
small plot. But it was fun starting everything
from seeds. Also started a bunch of zinnias
and marigolds which are now in the ground.
With luck, I'll be harvesting my pumkins while
I get out the next QUARTERLY! <grin> I am
really thinking about planting a walnut tree;
although they take a good ten years to
develop, they are said to be great climbing
trees and Stacey really likes to climb
trees. We'll see •••

The BLURB - 5 - The BLURB

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

Announcing New Products
RATFOR-86™ and RATFOR-M4™

This product has been a long time coming. But
MISOSYS is finally shipping both the MS-DOS
compatible RATFOR-86 and the TRS-80 Model 4
compatible RATFOR-M4. Both products were
developed by James K. Beard, Ph.D. Currently,
James is a Senior Scientist working for the
Hughes Aircraft Company. To get you started in
understanding a little about the RATFOR
language, here is a short introduction to
RATFOR and its usage written by James K.
Beard.

RATFOR is RATional FORtran. Although sometimes
described as a "preprocessor", RATFOR 1.s
actually a language unto itself. Conceived in
1973 by Brian Kernighan of Bell Laboratories,
RATFOR was originally implemented in
collaboration with P. J. Plauger, now of
Whitesmiths, Inc., in 1975. The original
version~ on nine track tape for microcomputers
such as the DEC PDP-ll, is still available
from Addison-Wesley Publishing of Reading, MA.
The au thori tati ve book at that time was
"Softwa~~ Tools", by Kernighan and Plauger.
The C -°i,inguage and UNIX were under development
by 'Kernighan and Ritchie at Bell Laboratories
at the same time. RATFOR became a standard
UNIX utility. The West coast UNIX community
adopted RATFOR -··as a systems language in lieu
of C for a UNIX-like shell for use on all
minicomputers not using UNIX. In addition, the
Berkeley UNIX organization has continued to
develop and market RATFOR as a major
enhancement of UNIX 4.2. A major extension of
RATFOR, called EFL (Extended FORTRAN
Language), is also included with UNIX 4.2.
UNIX 4.2 is marketed commercially by Mt. Xinu
(UNIX™, spelled backwards!).

Although alive and well in the UNIX community,
RATFOR is largely unknown elsewhere. An
article I wrote for Computer Language Magazine
for their February, 1986 issue was printed as
their Exotic Language of the Month (page 75).
Therefore, a brief description of RATFOR is in
order.

The RATFOR language is defined in terms of
tokens. Tokens are alphanumeric identifiers,
numeric constants, and non-alphanumeric
characters. Statements are made up of tokens
and are delimited by carriage returns or
semicolons. The language is free-field,
meaning that there is no particular
significance to any particular column. Lines
are usually limited to 80 columns so that
unformatted listings may appear on standard 80

column terminals and printed pages. Nearly all
FORTRAN keywords are carried over, including
the extensive and powerful standard FORTRAN
function and input/output libraries. Also,
FORTRAN arithmetic statements are used,
including mixed mode arithmetic and the
exponentiation operator. In addition, most
keywords from the C language are also part of
RATFOR; this is not surprising since Kernighan
played a key role in both language
definitions. The result is that RATFOR is a
fully structured language in the tradition of
ALGOL, PASCAL, C, and ADA with the power and
versatility of FORTRAN.

RATFOR is nearly always implemented as a
translator. A translator differs from a
compiler in that a compiler translates raw
source code to hardware-dependent assembly
language source code. Translators are
compilers which translate raw source code to
source code for another high level language,
such as C. Translators are common where
portability of the compilers is important and
are almost universal in the early stages of
development of any compiler. "Compiler
compilers" such as YACC, which use data files
which describe the keywords and structure of a
language as input data, produce compilers for
the new language in C source code. Compiling
the result gives a compiler for the new
language.

RATFOR translators translate raw RATFOR source
code into FORTRAN object code. This has
exactly the same advantages as translators to
C in contexts where FORTRAN is universal and
largely portable. This is true in the
microcomputer/mainframe community today. This
can be to advantage to the engineering
workstation user in that powerful, easy to
write structured source code can be executed
on any machine which has a FORTRAN compiler.
Since uploading and downloading ASCII text and
programs is standard in engineering
workstations, RATFOR can be translated at the
workstation, the FORTRAN object file can be
uploaded, and the final compilation and
execution can be done on the mainframe. This
makes best use of the workstation as a file
manager and application or software
development facility, and the mainframe is
best used in execution of large optimizing
compilers and execution of applications
programs.

The simplest way to demonstrate the simplicity
of RATFOR is to show a few sample programs.
The one selected is a simple program used to
compute and plot tradeoffs associated with the
use of Dolph-Chebychev windows, a weighting

Announcing New Products - 6 - Announcing New Products

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

technique widely used in communications to
control crosstalk. Examination of the program,
reproduced below, shows that a simple
relationship between the algebra used and the
program is evident from the listing. Also,
statement labels are completely absent except
for FORMAT labels. Use of "define" and other C
language keywords is important to the
simplicity of the program, The same program in
FORTRAN would be much more complex in
interpretation of the source listing.

#Program tested on TRS-80 Model 4
define PI 3.1415927 #Mathematical constant
define READLUN 1 #I/0 units for console
define PRINTLUN 3
program dcplot #Plot Dolph-Chebychev window
parameters
dimension h(128)
print 1000; 1000 format(" No. of points 10

window, output LUN' s? ")
read 1005,n,lun,lunl; 1005 format(3il0)
if (lun>4) call open (lun, "plot/ dat ", 256)
write (lun, 5000)

5000 format(" Windowing Tradeoff"/
" Two-Way Sidelobes"/ -
" Lobe Broadening") -

if(lun>4) call open(lunl, "plotl/ dat ", 256)
write(lunl,5010)

5010 format(" Windowing Tradeoff"/
" Two-Way Sidelobes"/ -
" Lobe Crossover, dB")

do isdb=20,100
{
sdb=isdb
call dolchb(n,-sdb,h,sbf,dbd)
write(lun,1010) sdb,sbf; 1010 format(2gl5.6)
write(lunl,1010) sdb,dbd
}

end
subroutine dolchb(n,sdb,h,sbf,dbd) #Dolph
Chebychev window weights
1fainputs:
n Number of weights
sdb Sidelobe level (>O for weights h(i), <o
for sbf and dbd only)
1faoutputs:
h Weights (not computed if sdb<O)
sbf Sidelobe broadening factor (3 dB
width/ (1/n))
dbd Bin crossover with FFT or beam crossover
with delta sine =1/n
#Frequency response is
T(n-l)(q*cos(PI*f))/s
1fawhere
T(n-1) is Chebychev polynomial of order n-1
f is fraction of sample rate
q is constant>l found from
q=cosh(acosh(s)/(n-1))
sis sidelobe height as amplitude ratio
dimension h(n),x(256)

asdb=abs(sdb)
q=qfroms(asdb,n) #Compute q
q3db=qfroms(asdb-3.0103,n) #Compute broadening
factor
sbf=2.*n*acos(q3db/q)/PI
dbd=20.*aloglO(dcf(n,q,.5/n))-asdb #Compute
beam/bin crossover point
if(sdb<O.) return #Exit now if weights are not
to be computed
#Compute frequency response
nback=n+l
offset=, 5*nback
n2=offset
xO=n*dcf(n,q,O.). #Normalization factor
x(l)=l./n #DC term is trivial
do k=2,n2

{
f=(k-1.)/n
x(k)=2.*dcf(n,q,f)/x0 #Factor of 2 here

instead of in series
}

do j=l,n2 #Use DFT to compute
frequency response

{
df=2.*PI*(offset-j)/n
sum=x(l)
do k=2,n2

sum=sum+x(k)*cos((k-l)*df)
h(j)=sum
i=nback-j
h(i)=sum
}

return
end
function dcf(n,q,fa) #Dolph-Chebychev
frequency response
n Number of weights
f Normalized frequency (fraction of sample
rate)
#Returns T(n-l)(q*cos(pi*f)), where T(n
l)(x)=cos((n-l)*acos(x))
ifa=fa+0,5 #Limit f to lfl<=0.5
f=fa-ifa
argl=q*cos(PI*f) #Compute fundamental argument
switch n

{

case 1: tn=l. #TO(x)=l
case 2: tn=argl#Tl(x)=x
default: 1faCompute rest by recursion

}

{

tn2=1.
tnl=argl
tx=2. *argl
do i=3,n

{
tn=tx*tnl-tn2
tn2=tnl
tnl=tn
}

}

Announcing New Products - 7 - Announcing New Products

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

return(tn)
end
function qfroms(db,n) #Computes Dolph
Chebychev parameter q from sidelobe ratio
s Sidelobe ratio (dB=20*aloglO(s))
n Number of weights
#Equation is q=cosh(acosh(s)/(n-1))
#double precision ddb,s,argl,dval
ddb=db #Convert to double precision
s=l0.**(,05*abs(db)) #Compute voltage ratio
from dB
argl=alog(s+sqrt(s**2-l.)) #Compute acosh(s)
dval=exp(argl/(n-1)) #Compute cosh(argl/(n-1))
dval=.5*(dval+l./dval)
qfroms=dval #Convert back to single precision
return
end
#acos(x) function required for Model 4

The above example shows how RATFOR extends the
power of FORTRAN while at the same time making
programming simpler, Another example shows how
the use of macros, set up with the "define"
statement, can extend the fundamental keyword
set in the language. The example selected is
INPUT, which performs a function similar to
the BASIC language INPUT keyword, A prompt is
defined and a variable is read in from the
keyboard, and an error in input results in a
repeat of the prompt until the keyboard input
is successful. Note that local labels are not
repeated; this process is similar to that used
in better macro assemblers which use non
repeated local symbols in macros. Following
the example are samples of its usage.

#INPUT macro tested on MS-DOS microcomputer
using Microsoft FORTRAN version 4.0
#Syntax for INPUT macro:
INPUT("<prompt>", <variable> [, <format label>])
define INLAB 1
define(INPUT, [define(INLAB,incr(INLAB))
repeat

{
ierr=l
print *,$1
read(*,ifelse($3,,*,$3),err=INLAB) $2
ierr=2

INLAB [continue]
} until(ierr==2)

])
define READLUN *
define PRINTLUN *

1/:Sample usages:
INPUT("MDL for range computation (0 to
end)?" ,mdldb) 4/:Floating point variable
INPUT("Input file name?",fname,100) 4/:ASCII
string with FORMAT label

100 format(15al)

C Resulting FORTRAN code:
23003 continue

ierr=l
write(*,*)'MDL for range computation (0

to end)?'
read(*,*,err=2)mdldb
ierr=2

2 continue
23004 if(.not.(ierr.eq.2))goto 23003
23005 continue

C •••

23002 continue
ierr=l

3
23003
23004
100

write(*,*)'Input file name?'
read(*,100,err=3)fname
ierr=2
continue
if(.not.(ierr.eq.2))goto
continue
format (15 al)

23002

Macros can call other macros or even
themselves. Macros which call themselves are
called recursive macros. These can result in
very powerful new keywords which are limited
only by the imagination of the user.

MISOSYS publishes two versions of RATFOR. One
executes on MS-DOS machines and one executes
on the TRS-80 Model 4 under LS-DOS/TRSDOS
Version 6. The two versions share a RATFOR
manual of about 86 pages including an
extensive index. An implementation-specific
installation manual concerning hardware and
workstation issues is available with each
version; the advantages and disadvantages of
the FORTRAN compilers available are also
discussed candidly in the installation
manuals. All features of RATFOR are described
in stand-alone reference form in the manual. A
shorter narrative of RATFOR features is also
provided there.

The MS-DOS version RATFOR translator is
provided as an .EXE file so that it can be
used with all MS-DOS FORTRAN compilers or in a
workstation which does not have its own
compiler at all. The Model 4 RATFOR translator
is provided as a relocatable object file which
needs to be linked with FORLIB/REL. A Job
Control Language file is included which
performs the linking process using your
FORLIB/REL FORTRAN library and L80 linker. The
Model 4 version, RATFOR-M4, also includes a
customized version of the LED text editor for
source code maintenance. Each version comes
with a batch or JCL file useful for performing

Announcing New Products - 8 - Announcing New Products

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

the RATFOR translation, FORTRAN compile, and multiplier, a todo list manager, a terminal
subsequent linking to generate an executable program, and more.
file from the RATFOR source.

These RATFOR translators
priced at $99.95 + $5
includes installation
disk-based software,

are each currently
S&H (US); the price

and reference manuals,
and binder. Order M-21-
M-86-073 for the MS-DOS 073 for Model 4 or

version.

PRO-WAM Release 2

Since the release of LS-DOS 6.3, we have had
many requests from PRO-WAM (nee PRO-NTO) users
asking for revisions to the BRINGUP
application to extend its date support beyond
1987. Well here is an announcement that should
please every PRO-WAM user; and make many other
folks run out to get PRO-WAM Release 2.

In the 80 Micro review of PRO-NTO Release 1
back in November 1985, Hardin Brothers said,
"PRO-NTO is one of the most useful products
for the Model 4 I've seen." Well we have
supercharged this new release to include just
about every feature requested by our PRO-WAM
users and added other significant enhancements
that should make PRO-WAM even more useful to
just about every owner of a 128K Model 4.

To those Model 4 owners uneducated about PRO
WAM, here's a little PRO-WAM overview. The
"WAM" stands for "window application manager".
PRO-WAM is a manager of applications which pop
up in windows on your video screen. You can
pop up a PRO-WAM application whenever you are
running any other "DOS-behaved" program. The
PRO-WAM application can capture anything on
the video screen by means of a function called
"import". Similarly, a function called
"export" can be used to pass back to the
interrupted program, anything which is in the
PWO-WAM application's window.

There are essentially two parts to PRO-WAM:
(1) a resident module which supervises and
controls the operation of the video windowing
and application execution, and (2) a set of
application programs some of which may be made
to reside in memory. PRO-WAM uses about 2500
bytes of your machine's high memory and one
memory bank. That's why it requires a 128K
machine.

Application programs provided
include a calender, a bringup
file, an address/rolodex™ file,
file, a modem autodialer,
calculator, a disk-based

with PRO-WAM
and tickler
a 3x5 card

a 4-function
key-stroke-

Let's take a look at some of the features
which have been added to the window manager.

PRO-WAM now supports Model 4 reverse video
detection and restoral at each level of
application execution (there are four levels).
For those of you using Visicalc or Multiplan,
you can now get into PRO-WAM applications and
return to your spreadsheet screen with reverse
video intact. Besides that, PRO-WAM
applications can make use of reverse video in
their screens; we use it in CARDX.

More Model 4 folks are taking advantage of
extended memory add-in boards to gain
additional memory banks. With that have come
requests for better memory bank control in
PRO-WAM. So we added a BANK parameter for PRO
WAM installation to force PRO-WAM to use your
designated bank number rather than
automatically search for a spare. Even if you
don't want to make use of that, PRO-WAM's
automatic search will now look up to bank 30.

PRO-WAM is installed as a keyboard device
filter. Under Release 1, when you wanted to
remove PRO-WAM by a "PRO-WAM (OFF)" command,
all keyboard filters were reset which required
you to re-filter the *KI device with the other
filters you had installed, Under release 2,
"PRO-WAM (OFF)" now unfilters the *WM device
rather than RESET *KI. This leaves your *KI
device chain intact (except for the PRO-WAM
removal).

PRO-WAM now accesses application modules from
a library - not from standalone modules. This
keeps the applications from cluttering up your
directory. PRO-WAM initially loads from the
WAMO/APL library. Thereafter, the UNIVERSAL
function request for "Application?" is now
satisfied from that library on the drive where
the library was found unless overridden by the
application module specification (mspec$)
entry. Even though a library can hold 32
applications, more than most folks will have
use for, UNIVERSAL can still specify the
library to access or default to WAMO/APL.
Specify "modname" to access WAMO/ APL for
"mod name". Specify "1,!-modname" to access
WAM1F/APL for "modname". The new drive will be
again used in subsequent UNIVERSAL requests
until changed by explicit entries in a mspec$
(either UNIVERSAL or programmed execution).
You can have up to ten application libraries
(designated WAMO/APL through WAM9/APL).

Announcing New Products - 9 - Announcing New Products

Volume I.iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

We've expanded the capabilities of the window
supervisor call with two significant
enhancements: programmed control of export and
programmed invocation of an application
module. We use the former to automate the
PHRASE application and the latter to enable
the "bringup hot key" in CAL. Of course both
facilities are available to every programmer,
as well.

To expand on the concept of "protected
fields", we've added the concept of "protected
characters" to the behavior of export/ import.
Any character within the defined rectangular
export/import area which bas a value greater
than 127D (i.e. bit-7 set) will not be
output/input; i.e. it will be considered a
protected character. Most typically this would
be a reverse video character; however if
reverse video is not in effect, any graphic or
special character greater than 127 will be
considered protected and not output/input.
This will be extremely useful with our revised
CARDX card file application.

Export/import now supports a logical ENTER
character which will be translated to a hard
carriage return regardless of the
import/export state (CR or NOCR). Thus, a text
phrase can be export as "multi-line" even
though it is a continuous stream of characters
without a carriage return. The logical ENTER
character is tested before the protected
character test; thus, values greater than 127
are acceptable for use as a logical ENTER. The
default logical ENTER character is 127d (7FH)
which can be entered by <CLEAR><SHIFT><ENTER>.
We've added an "ENTER" parameter to the PRO
WAM installation so you can change it to one
of your choice. It's even configurable with
DEFAULTS.

We've used the expanded features in the
application manager to make considerable
improvement in the existing applications and
added some powerful new ones. Here's what's
been done in the application arena.

Many users requested that the CALendar
application flag days which have a BRINGUP
activity entered. Well we added a facility to
display an asterisk in the leftmost position
of a day cell if there is an active BRINGUP
record for that day. CAL scans the entire
BRINGUP/DAT file and maintains a table of
flags indicative of activity per day for an
entire year. The file is only re-scanned when
you change years (if it found a BRINGUP file
initially). We also added a "bringup hot key"
in the CAL command list so that you can easily
position to the day showing an asterisk and

hit one key to bring up the list of activities
you have scheduled for that day. That facility
has become indispensible here at MISOSYS.

Speaking of BRINGUP, we altered the structure
of the data file so that the year spans 16
years: from 1984 to 1999. The date field
storage was also reorganized so that is can be
sorted in ascending order. Since sorting by
PSORT requires a data file header record, that
was added too; BRINGUP data files can now be
sorted by date and time using PSORT. This
requires a convert utility for your existing
files which is included with the release.

Now sorting the bringup data file only makes
sense when you have a facility for printing
activities. Enter the new BUP/APP application.
This wammie, which can be invoked directly
from BRINGUP, supports printing of bringup
activities by date range using a syntax
exactly like that in your DOS for BACKUP and
DIR date parameters. We also added '.' as a
shorthand for "today". Standard user-input
print formatting is supported similar to that
facility in ADDRESS and CARD. BUP also
incorporates the REMOVE command which used to
be in BRINGUP.

I keep an ADDRESS file in the computer on my
desk. Since I like to use it to capture
address headings when writing letters, I got
tired of exporting the address record as it
appeared in the window which required editing
in my text editor. That's why I designed HEAD.
This new application accesses the ADDRESS/DAT
file and presents an address record in the

format: I
;~::·;: .. , .

i
address 1 ¥
[address2] t
City, ST ZIP ~-t.

f
'('·-.-~,·- .. , ··- .,___ _,.,.._·~~"-~..,.-~

''; .. _ . .,,. r '·' .· ~ .- , I t F', 1 I "'- - • ' • . • ' . I
I 0 j;:, -~,f~-1• l ; - - • ' '-•. h,,..J
l • . . ;-

t.:~o ~: :>211 f
. . ,.~--

If the Company field is blank, then it won't
appear in the window. Likewise, if Address2 is
blank, it won't take up a line. I even coded
HEAD to drop trailing spaces from the fields
so, for instance, there's no big gap between
First and Last. HEAD provides commands just
like ADDRESS: search, next, prev, first, last.
An <ENTER> will automatically export the
record. The application is useful for
extracting address information for use as a
heading in a letter. It sure saves me some
time and eliminates needless editing.

We've modified ADDRESS/APP to pick up the sort
key and key length so that the search command
now uses the external key information

Announcing New Products - 10 - Announcing New Products

Volume I.iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

specified in the data file header record
rather than hard coding the search to the
lastlfirst fields. This means you can alter
the key location and length fields in the
ADDRESS/DAT file to order/search by ZIP,
Company, or whatever. This was to satisfy a
few requests from folks wanting ADDRESS to
sort and search on the Company name field,

I fail to understand why the MS-DOS world
clamors for key-stroke-multiplication
facilities such as SUPERKEY, POWERKEY, and
whatnot, yet the TRS-80 users rarely explore
the capabilities of their own KSM facility
which has been available in LOOS and TRSDOS 6
for years. Nevertheless, we have added a new
application called PHRASE. This wammie
accesses a PHRASE/TXT file consisting of any
number of phrases. You can scroll through the
phrases or enter a phrase mnemonic. An <ENTER>
will export the phrase selected, Your phrases
can make use of the logical ENTER character of
export, This is akin to a more or less
infinite KSM. The syntax of a phrase is a 2-
character mnemonic followed by 1-78 text
characters and terminated by an <ENTER>. The
PHRASE/TXT file is composed of any number of
phrases. It is terminated by a period, '.',
following the last <ENTER>. Use any ASCII text
editor to input and edit the PHRASE/TXT file
(use TED, for instance).

The phrase facility can work wonders when you
want to prepare letters, drafts, etc., using
"canned" phrases. You can also use PHRASE to
store strings for application print formats.
How about DOS command strings? It boggles the
mind!

CARDX/ APP is a _ ne:w . application which is an
enhanced cARD· -:fire.:·. It supports up to ten
CARDx/DAT £fies {0-9] rather_. than the single
one under Release 1. It make$ use of reverse
video to designate protectedJscreen positions
which cannot be edited (nor exported). CARDX
will actually skip over any screen position
which is in reverse video.

CARDXF/APP is used to construct and edit a
CARDFORM record for use with CARDX, This
wammie allows you to create new data files and
add/edit a cardx record identified as
"CARDFORM". Reverse video, which is used for
protected fields in CARDX/APP, is toggled via
<CTRL-R>. The screen indicates the current
state of reverse video. CARDXF also allows you
to "populate" the CARDX file with any
designated quantity of records initialized
with the "CARDFORM" form.

It's easy to use the cardxf editor to "paint"
your form onto the text area of the window. By
using reverse video for every position which
you want "protected" from entry while using
CARDX, you can create a form to be filled in
later. When using CARDX, the cursor will be
automatically moved to the unprotected
positions. This combination of CARDX/CARDXF
can really provide you data base functions.

Around here we always seem to forget to do
this or forget to do that. Sometimes BRINGUP
doesn't work when you just want to keep a list
of items to be done. Remember that todo pad?
That's why I designed TODO/APP, a new
application which is used to establish and
maintain a simple list of items "to do". Now I
wanted to keep Brenda's todo list together
with mine so I designed it with a field to
indicate "who does it". This wammie generates
a TODO/DAT file which is similar to a BRINGUP
file. Allows priority of 1-8, a "who does it"
value of 0-15 where a value of O is considered
global (more on that later), and a text field
of 29 characters. The "add" date is added to
the record. Commands al low you to "add" an
item, mark an item as "done" which deletes it,
"file II any changes, move to "next" or
"previous" display page, and "list" items. A
page displays the 8 items in a disk record
(rather than working like BRINGUP, the display
works like DIALER). The list command allows
you to print all records or the current record
additionally specifying either all "who does
it" or a particular "who does it". Any item
tagged as "who = O" will always appear on a
listing. Forget Hi's "job jar"; TODO does it!

PRO-WAM comes with an on-line help facility
which has been updated to include all of the
features added in release 2. It can keep you
from having to resort to the user manual when
you forget a particular operation of PRO-WAM.
Of course, since every application has a
command menu, you will rarely have to resort
to the manual once you have familiarized
yourself with the operation of the
applications you will use.

PRO-WAM also comes with some improved
utilities; and some new ones to boot. With all
the talk about sorting BRINGUP files by date
and time, you may have realized that PSORT
needed some work. Well PSORT/CMD has been
revised to accept an expanded data definition
of up to two key sort fields. Not only that,
but the fields can be either character or
integer.

Announcing New Products - 11 - Announcing New Products

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Because of the switch to application
libraries, we've included WAMLIB, a utility to
build and maintain application libraries.
WAMLIB has functions to create a library as
well as the functions:

add a module
delete a module
replace a module
extract a module
list module directory

WAMLIB is menu driven and easy to use.

Since applications are now invoked from
libraries, PRUN has been enhanced to load
applications from libraries, too. However,
since some folks may have a need to invoke an
individual application file, PRUN has been
enhanced with a parameter APP (abbreviated A).
PRUN will normally load the application from
the WAM0/APL library (or other library when
the module name is prefixed with the library
number). If you want to force PRUN to load a
standalone application (i.e. for testing
before adding it to a library), specify the
APP parameter as in: PRUN application (APP).

Well that's it. PR0-WAM release 2 includes the
window application manager, 18 different
applications in a library, a library manager,
the PS0RT utility, the PRUN facility, a help
facility, and a DEFAULTS utility to customize
your PR0-WAM configuration; all on disk. PR0-
WAM Release 2 includes a totally revised
reference manual housed in a 5-1/2" by 8-1/2"
3-ring binder. If you don't have PR0-WAM yet,
order M-51-025 for $74. 95 + $5 S&H (US). If
you are already a PR0-WAM (or PR0-NT0) user
and want to trade up to release 2, send in
your old master diskette and order M-51-125,
the complete PR0-WAM Release 2 package for $25
+ $5 S&H [note: if you have purchased PR0-WAM
release 1 since April 1, 1987, you can trade
up to release 2 for $20 + $5 S&H with the
return of your old disk]. The trade-in offers
are valid only until 03/31/88; so hurry up
with your old PR0-WAM tradein to Release 2.

Announcing New Products - 12 -

jj1i:1~111:il111:::;,,,,, 11 11:11!: I .11
1

11~il'

Release 2

Window controller and Applications Manager

PRO-WAM supplied applications can turn your 128K Model 4, 4P TRS-
80 into a sophisticated business or personal machine rivaling the best
of them. That's because PRO-WAM comes with many useful and
powerful menu-driven time savers and work organizers. PRO-WAM
includes eleven applications, a complete HELP facility, a data file sort
program, a 99-page user manual, and is easily installed. While you
operate other programs, you can request its services with a single
keystroke. PRO-WAM saves you typing with its EXPORT and IMPORT
functions which allow you to move data across windows between
programs. Requires 128K TRSDOS 6.2

PRO-WAM APPLICATION MODULES

• ADDRESS: Mailing Labels and Rolodex™Cards
• BRINGUP Tickler File and Appointments
• CALENDAR: Any Month From 1582 to 4902
• CALCULATOR: Four Function Floating Point
• RPN CALC: Seven Function in Bin, Oct, Dec, Hex
• CARD: 480 Character 3x5 Cards for Notes and Data
• CHARSET: Display All Video Characters
• DIALER: Telephone Number List and Auto Dialer
• DOSAVE: Save Entire Screen to Disk
• TERM: A Really Small Terminal Program
• TYPER: Line-Buffered Typing to Your Printer

PRO-WAM $74.95 + $5 S&H

plus 7 new applications in release 2!

Here's Mr. ED

More powerful applications for your PRO-WAM. This pac includes an
editor for your every need. You get:

e.OED:
• FED:
•MED:
• TED:
•VED:
• CARDFORM:
• DOLOAD:
• REGENBU:

Edit disk sectors on any drive
Edit file records in any disk file
Edit any page of memory in any bank
A pop-up full screen text editor
Edit the video screen; gives cut and paste
Populate CARD with a form
Brings OOSAVEd files back to the video
Shrinks BRINGUP/DATfile

Mr. ED $59.95 + $3 S&H

What? You don't have PRO-WAM yet?

800-647-6797

MISOSYS, Inc.
POBox239
Sterlil'.!9• VA 22170-0239
703-450-4181 MC, VISA.CHOICE
Orders Only! 800-MISOSVS 1P·SP EST M·F

VA residents add 4½% sales tax. S&H: Canada add $1;
Foreign use S&H times 3

Announcing New Products

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Letters to the Editor
Leap years a la 2000 revisited

Continuing from TMQ I.iii, here's some more on
the subject.

(Fm: Adam Rubin 71320,1052)
have to take that up
(Assuming the Statute of
expired, of course!)

Sorry,
with

but you' 11
Parliament.

Limitations hasn't

Actually, the Act included provisions for
contracts and other "dated" events, which were
extended eleven days beyond any old style date
agreed upon. For example, George Washington
was born on February 11, 1732 (old style), but
was not twenty-one years old until February
22, 1753 (new style).

For the benefit of anyone else (if there IS
anyone!) who's following this rather
disjointed thread, the library finally found a
booklet I'd requested. The full title is, "Act
and Bull; or, Fixed Anniversaries--a Paper
submitted to the Numismatic and Antiquarian
Society of Philadelphia, Nov. 4, 1880, by
Lewis A. Scott, with an Appendix containing
the Bull of Gregory XIII., translated, and the
body of the Act of Parliament," and it was
published by the Society around 1881 or 1882.
The question at hand was the proper date for
the bicentennial of William Penn's landing on
November 8, 1682 (old style); it contains an
interesting discussion as well as the other
documents mentioned in the subtitle. I found
it very informative, and recommend it to
anyone else interested in the subject.

Here's what must
concerning the next
appeared, in the Ann
May 29, 1987 June
WASHINGTON POST].

be the final remark
centennial. The following
Landers column of Friday,

1, 1987 [as printed in THE

"Dear Ann Landers: Will you please help settle
a friendly dispute? The loser has agreed to
send a $50 donation to the winner's favorite
charity. Question: What is the first day of
the 21st century? My friend insists that it is
Jan. 1, 2000. I say it is Jan. 1, 2001. Who
wins? - Hugh W. in Wilmington, Mass.

Dear Hugh: I called six very bright people and
guess what? Three said Jan. 1, the year 2000,
and an equal number said Jan. 1, the year
2001. Each person went back to the year Christ
was born and from then on it became
unbelievably complicated. I am not touching

this one. It's one of those tricky questions
that can make you crazy."

Well I have been reading the Landers column
for quite a few years (who said real men don't
read Ann Landers?). After the lengthy
discussion which appeared in the last issue of
TMQ, I could not remain silent. Taking
keyboard in hand, I sent the following letter
to Landers.

"Dear Ann Landers, After reading your column
for years (I am male, age 44, married with two
children), I wanted to offer my insight into
Hugh W. 's question on 'the calendar date of
the first day of the 21st century'. I am in
the computer software business and publish a
magazine in support of my product line. Just
as you have found with your readers, my
readers generally come up with some good
advice.

Our subject in question was not which day was
the first day of the 21st century but rather
was the year 2000 a leap year. The responses
also shed some light on the answer to your
readers question. In the interest of providing
advance discussion on a topic which will
certainly rise in significance as we approach
2000, I offer you a copy of the dialogue which
was printed in my Winter 1987 issue, for what
its worth. I've highlighted the paragraph
pertaining to your question.

Glad to be of assistance (but not a contender
for your previous job in that 'other' paper)."

Compliments and complaints

(Fm: Lloyd Davidson) Hello folks, Have been
absent from the forum for some time as I have
been busy with other computers, languages and
a coupla BBSs. The first thing I did when I
logged on then was to download and read (off
line) all of the current messages from all
categories. A task that is much easier and
less expensive since CIS decided to give us a
break on 2400 baud. Would like to comment on a
few of the messages for no other reason than
to get my two cents in.

LS-DOS 6.3 - From an end users point of view,
this is a dandy system. Does what it is
supposed to and doe.s it we 11. I have a number
of disks configured in many different ways and
have not had a hitch from 6.3. One disk I use
for word processing has both SuperScripsit
(with dictionary) and Powerscript on it. Even
threw in TED and have Pronto (PRO-WAM now)
resident to bring up a calendar, a card file

Letters to the Editor - 13 - Letters to the Editor

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

and a bringup file. Steve Milliken's excellent
SHELL runs fine with a short patch supplied by
Steve and I have what has to be a VERY good WP
setup. Might add I've had the Model 4 since
sometime in 82. It is the old non-gate array
model that I've added a beefed up power supply
and two teac DS DD drives to.

TANDY aka Radio Shack - True I have not always
been treated like a returning prodigal son
each time I walk into the store and I have
done most of the hardware hacking and repair
myself. (Often tuning to maximum smoke) I have
met the usual "battery salesman" in many
RSCC's but lets face it folks, they make darn
good machinery and without them we wouldn't
have a thing to grouse about would we?

THE PRICE OF DISKS - Have found that usually
cheaper is better, Think more depends on the
condition and quality of your drives than on
how much you spent on the media. Have had
$3.00 a shot disks with pretty jackets fail to
format on a PC-clone with a wobbly drive. It
is not difficult to maintain and adjust your
own floppy drives and you otta learn. Will
never be able to get really precise like a
mechanic with expensive test racks but you can
keep it in the ball park. I have bought
nothing but the $.29 specials for some time
and have had no trouble. I really think that
the Model 4 and LSDOS could format a flat rock
if you get the wholes punched right.

INSTALLable Software

(Fm: Byron P. Peebles) Am I imagining things,
or are the VAST MAJORITY (read "al 1
commercial") of microcomputer (8- and 16-bit)
a little on the defensive side when sugges
tions are made on improving their products? I
get the feeling I'm hearing a whining sound
while I read the replies. I know budgets are
tight for the small business person. I know
theft of software is rampant. I know there
must be fifty problems I'm not aware of for
the commercial developer. I also know there
exists a person called the "end-user/ client".
This mythical person is NEVER WRONG, is
TREATED WITH RESPECT, and has the WORLD'S MOST
RESPECTED OPINION. I also know that this is
the person that keeps everyone in business.

And once in a blue moon
has experiences that
insight to the "high
that developer willing

this "end-user/ client"
could provide great

tech" developer, were
to listen.

{Sound of soapbox being shoved back under the
desk} The above message relates to the coming
death of the 8-bit microcomputer.

(Fm: MISOSYS) Byron, I think when a developer
spends a lot of time revamping a package and
the first thing folks ask when it gets
released is why don't you add this and add
that, and when's the next release, it gets
sort of frustrating. Very few folks are
considerate enough to wait some degree of time
before they start asking for the moon again.

On RSCCs

(Fm: jjkd) [Here's] a story relating to one of
the better RSCC's I've been to. It happened to
be in Ontario, Canada. I went in on a lark, as
I was on a business trip and wasn't really
equipped to carry anything major back with me.
I did walk out pleasantly surprised at the
employee's attitudes and capabilities, along
with the neatness of the store and stock, and
I got a Canadian RSCC catalog. That had to be
one of the best RSCC's I've ever been in. I
meant to get the name of their DM and write
out an "attaboy" letter, but I never did get
around to it.

Anyway, to make a long story a bit shorter, I
took the catalog back to work with me. A
friend of mine was considering buying a 3000,
but had been hemming and hawing for some time.

Me: "Hey Lynn: did you buy that Tandy 3000 you
were looking at?" Him: "Naw, I haven't really
decided yet." Me: With a very sorrowful look
on my face, "Gee, did you hear about the new
price increases?" Him: "No! Computer prices go
down, not up!" Me: "Yeah! Somethin' to do with
Japanese chips, or the yen or stomthin' like
that, I heard. Look, I just got the new Radio
Shack Computer catalog ••• "

I showed him the Tandy 3000 page in the
catalog, with the catalog folded over, of
course. There the price was, but in Canadian
dollars of course, something like $4000
without the hard disk vs. $2600 in the US. His
eyes just sort of glazed over, and the look on
his face was priceless. He didn't notice the
listing for MS-DOS available in French for $99
or so, thank goodness. I let him off the hook
about five minutes later.

Two days later he bought a 3000 through one of
the mail order places.

Letters to the Editor - 14 - Letters to the Editor

Volume I.iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

ANSI standards -where to get them

(Fm: Adam Rubin) ANSI standards can be
purchased from (where else?) Sales Department,
American National Standards Institute Inc.,
1430 Broadway, New York, NY 10018. (Unless
they've moved, that is!) Also, some libraries
have reference copies of these; I've found
them at both the Chicago Public Library and
the Engineering Library here at U-M, for
example. Incidentally, I believe the full name
is X3.64-1979, where 'X' is the committee, '3'
is the subcommittee, '64' is this particular
standard, and 1979 is the year of the last
revision of this standard (which may be later
by now).

X3.64 covers most of the escape sequences,
including a few interesting-sounding ones -
Operating System Control, Message Waiting,
etc. You'll probably also want X3.41, which
covers other control sequences (Shift In and
Shift Out, Select Character Set, and so on),
and X3.4, which defines printable and control
characters, and their functions. (I believe
this last is the 'definition' of the ASCII
character set.)

If you' 11 be using these to write a VT-100
emulator for KERMIT, I'd strongly recommend
Digital's "VT-100 User Guide", which explains
which functions are implemented and what they
do. Their "Terminals and Printers Handbook"
might be useful, too. (I have a copy of the
VT-100 User Guide, if you have any specific
questions.)

Requests for CIS files on disk

(Fm: jjkd) The original author retains all
distribution rights for materials uploaded to
CIS. So, if at their behest, an article is
routed to somebody else for republication,
there is no problem. If the author limits
further distribution, or the author is not
consulted/does not give permission there is a
problem. Wholesale reproduction of a group of
files from CIS can be viewed as violating CIS'
compilation copyright on them all as a
collective work.

Upgrading MISOSYS Products

(rm: Bob Connors) Can you tell me how to and
how much is an upgrade to the products you
carry? I would like to upgrade my SAID from
1.0 to 1.1 (since I have noted that that is
the version currently being patched -- somehow
the fact that the version number changed

escaped me). Do I send back the master disk or
is my registration card I mailed in sufficient
to request an upgrade (I guess mailing the
disk back makes more sense). I think I have
seen this policy stated before, just can't
remember where.

One final thing, do you think that it would be
possible to include the current version number
of your products in your price lists? Would
sure help to let us "busy" types know when an
upgrade (not patchable) is needed. I just
never even realized my SAID was not the
current version until I went to patch it!
Since I got this version of SAID with my EDAS
4.3, will the EDAS be upgraded also along with
MAS, MED, et al.

(Fm: MISOSYS) The SAID 1.0 -> 1.1 upgrade
costs $5 + $2 S&H. It was covered in TMQ I.ii.
Ah, carrying a version number would not work
since SAID is no longer a standalone product.
And yes, we would reduplicate the entire disk
on the SAID update (gosh, you'd get all the
patches). You need to return your disk (in a
protective mailer).

TMQ kudos

(Fm: Marc Nowell) Received TMQ I.iii today,
and I'm greatly impressed! It is a HUGE issue,
and will give me plenty of reading for the
next few weeks. Also, it's nice having my
names (first and last!) spelled right in the
text where I am quoted. It is appreciated and
I'm glad that I could contribute!

(Fm: MISOSYS) Jim Gaffney wasn't so lucky. I
mispelled his in the TOC. Keyboard must have
had a sticky key(!). Now don't think that the
next issue is gonna be that big. The weight
drives my foreign costs way above subscription
costs due to the cost of mailing. That sucker
cost $5.49 to mail to Australia(!). Actually,
the next issue should stay within 100 pages -
it has to.

Also, as I fine tune the "look and feel" of
the QUARTERLY, I have decided to include the
full names unless specifically requested not
to. This includes public messages which have
been extracted from our Compuserve forum.

(Fm: Paul Rehberg) I enjoyed lying by the pool
yesterday (sunny, a hot 91 degrees in Houston)
reading my Winter edition of TMC. Shall I
stock a supply of cord wood for the fireplace
in anticipation of the Spring issue?! <grin> ·

Letters to the Editor - 15 - Letters to the Editor

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

I would gladly pay $59.95 again for a new Pro
Warn that included a business calculator (i.e.,
one that knows how to perform subtraction like
us 9 to Sers use all day long). Any chance of
one in the update?

And what ever happened to 3-ring holes in the
TMQ?

(Fm: MISOSYS) We gave up on 3-hole punching
after about 50 copies of issue I.i were ruined
by the hole punching operation. We do not
expect to take another look at hole punching.
However, we do expect to continue the perfect
binding introduced in issue I.iii - really
makes a class appearance.

I assume that a you mean subtraction as in
"number - number = result 11

• Have you not used
AFPCALC? That is "algebraic". Do you want
something else? Kind of hard to squeeze any
more functionality in a floating point
calculator application as the float routines
take up quite a bit of space. If you want an
algebraic "INTEGER" calculator, then that can
be arranged; however, one is not on the
drawing board for release 2.0.

(Fm: Adam Rubin) Yes, the perfect binding (on
TMQ) does look much nicer. I also liked the
separate sheet for postage and addresses. Any
plans to get an ISSN? (Oh, and I liked the
content too!)

Incidentally, how
submit query letters
some other way?

should budding authors
-- message, U.S. Mail, or

(Fm: MISOSYS) Query letters? If you mean an
article, please submit on disk. If you mean a
query about submitting an article, then either
a note on our Compuserve Forum, PCS-49 (don't
use EZP) or a letter or a call.

More on TMQ I.iii

(Fm: Shane Dawalt) I just received my Winter
TMQ and was just a bit surprised with the
Letters to the Editor. The person who said the
material in TMQ was over his head has boggled
my mind. There certainly isn't anything that
profound. And if it is, it is for hardcore
programmers which understand its implications
[perhaps on the second or third reading if
they are rusty programmers]. If the
information doesn't make sense, that
particular person is missing background

information on the subject and should take a
couple steps back.

I agree that user should support companies who
are supporting them, but the comment you made,
and I'm paraphrasing; user who don't support
the people who cater to their machines don't
need the support in the first place. If a
magazine is talking about BASIC, I'm not going
to buy it since I don't use BASIC all that
often. It is not that people don't want to buy
the product, they must weigh its usefullness.
I bought PRO-MC from you because I was tired
of pampering BASIC and I haven't been
sorry for my decision on buying PRO-MC because
it is useful. I don't buy what I don't need
and I don't expect others to do so, even if it
might be a $15.00 subscription to a magazine.

People who are ticked off
ticked off with themselves.
quite correct to discontinue
figures dori't warrant it.
nashing of teeth already.) I
people should be wondering
programmers went rather than
on you.

at you should be
I believe you are

support if sales
[I can hear the
think the Model I
where all THEIR

placing the blame

Finally, portability is a problem with the
Model I/III/4. I have a strict rule when I
develop software ••• if it uses undocumented
addresses -- PEEKs, POKEs and whatall -- it
should not be sold or distributed by
information services or BBSes. Too bloody hard
to support ••• never know what people are
doing on their systems.

Anyway, great TMQ. BTW, are TMQs
larger or do I need new glasses?

gettin'

(Fm: MISOSYS) I hope I can quote you on that,
The last issue (I.iii) was way too big. It got
that way because it was about 6 weeks late;
thus, it had a greater time interval for input
(I did cut out a few things as I noted). I
expect the next to compensate so that the
average is not above 100 pages. Can't afford
the shipping at that weight!

The Source for 6.2

(Fm: Kevin R. Parris) I understand that "The
Source" was published by LSI, but I bought my
copy from you. I also have read the disclaimer
in the front of the book - 'questions will not
be answered'. But I am willing to take the
risk that your response will simply be "the
disclaimer is correct", on the chance that you
might answer this question: on page seven of

Letters to the Editor - 16 - Letters to the Editor

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

volume one, in the listing for "Bootstrap
Loader", in the section after label "$Al",
there are two lines where object code is
shown, and comments, but no instruction
mnemonics appear. This is at locations 02E4
and 02E6, and also further down that page this
happens again, as well as a few other places I
have noticed in the book. Why is this? Thank
you for your fine work. The new TMQ arrived
Thursday - the heavy plastic wrapper is a very
good idea!

(Fm: MISOSYS) The source code in question
relates to access of Tandy hardware.
Proprietary agreements between LSI and Tandy
precluded LSI from publishing the "source" to
those particular statements.

New @EXMEM SVC, etc

(Fm: Paul Bradshaw) Regarding the newest issue
of TMQ, I'm curious of something. Is this new
SVC 108 (@EXMEM) official? I see you are
including it with the Model 4 interface kit
for LDOS,.. Is it now a "part" of the DOS?
Will the next version/upgrade include it? Why
wasn't something like this included in the
5.3/6.3 upgrade? Why not in 6.0, for that
matter? It is an absolutely WONDERFUL
addition, and was sorely missed,

Also, about your new RSHARD hard disk
drivers... These are different from the
TRSHARD that I got with my Hard Drive, and
that was distributed with 6.2, aren't they? If
so, how "big" are they? Is there a size
savings over the ones I'm using now?

Thanks again for a superb issue of TMQ. I have
only one comment/suggestion. In your new
section covering assembler on MSDOS, could you
"back off" just a little bit and fill in
necessary information such as "how many
registers there are, what are their names, how
do you address memory, what are some
instruction names, how do you interface with
the DOS", etc? Your first example was nice and
fairly easy to follow, but never having seen
the structure of the 8088 chip or its
brethren, I had to make assumptions regarding
the nameing of the registers ("AH and DX",
etc). I'm VERY interested in seeing this
column continue!

(Fm: MISOSYS) The new SVC-108 is "semi
official". That means that I have received
approval from LSI that the @EXMEM can use that
SVC number as it is more a system service

function. It is not part of the 6.3 release as
it was not done by LSI. I would have no
comment concerning any future release of 6.x.
"No comment II does not imply any between-the
lines assumptions.

I have asked Phil Oliver, author of ED/ASM-86,
to address 8086 programming from the
standpoint of exactly what you have suggested.
I expect to take a different angle. My
supposition is that TMQ has a lot of readers
already familiar with Z80 programming under
LDOS or LS-DOS; thus, my thrust will be to
expose these readers to the kinds of things
which can be done under MS-DOS which would be
very similar to what you are already used to.
Thus, it is expected to serve as a bridge.
8086 coding is confusing enough.

From my check just now as I write this, The
TRSHD6/DCT driver is 330 bytes long when
resident. RSHARD6/DCT is 335 bytes long - 5
bytes longer than the Tandy supplied driver.
Mine is longer due to the additional coding
overhead necessary to allow partitioning by
both cylinder and head and on supporting
physical cylinder sizes up to 1024 cylinders.

(Fm: Michael Johnston) Does anyone know if the
@EXMEM and BANKER programs have been uploaded
to Compuserve? I have the TMQ but I hate to
type them all in. I also need the update fixes
to the MC libs to include the @EXMEM
functions.

(Fm: MISOSYS) The @EXMEM and BANKER program
are part of the Copyright which MISOSYS has on
its THE MISOSYS QUARTERLY. The only thing we
upload onto the board presently are the fixes.
File copies of any programs which appear in
TMQ can be obtained from DISK NOTES unless the
original author of the program is not MISOSYS
and chooses to distribute the (his/her)
program in another manner. I have not made any
decision on uploading other parts of THE
MISOSYS QUARTERLY other than the fixes.

On Family news .••

(Fm: JACK I.OTTEY) I just received my TMQ I.iii
as I returned from my vacation. Ref the
personal news in or out of "THE BLURB" I find
it helpful to get to know a little more about
you and your family. I, too, am a
Philadelphian, from the Northeast ••• Frankford
High; but left after college for a life
scattered between NY and Central America. I am
still not much more than an "end-user" but

Letters to the Editor - 17 - Letters to the Editor

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

feel reading the Forum correspondence has
given me a few insights into the LOOS and
Model III world. Thanks for everything!

(Fm: MISOSYS) We were a little further NE.
Actually 0-10 was in Feltonville (C & Wyoming)
and 10-20 was in Lexington Park (near Cottman
and Blvd). I think most folks are not upset
about the family news.

80 Micro <grins>

(Fm: Gary Phillips) Roy, I sent the following
letter to 80 Micro today: "Dear Editors;

Your June issue would have left me laughing,
except that the inaccuracies were so severe as
to be painfu 1.

If Jack Feldman's review of LOOS 5.3 is an
example of what we can expect from your
present editorial policies and staff, then I
suspect users of Z80 equipment might as well
quit reading your magazine now. Mr. Feldman
makes statements about LOOS that amount to
pure libel! I can only wonder whether he
actually used the DOS or read the
documentation before writing his article.

As a technically competent and experienced Z80
user (I am a professional systems programmer)
I can assure Mr. Feldman that LOOS 5.3 in no
way "puts your old disks at risk" and that the
directory entries under this release are no
longer than they were in the past. You can
read and write diskettes from previous
versions of LOOS (and TRSDOS 6) while running
LOOS 5.3 with absolutely no hazard to the data
or directories on those diskettes. The only
problem is that the directory entries will be
maintained in a manner compatible with the
previous versions: no timestamp and no dates
after December 31, 1987. You cannot
inadvertently "destroy your disk if you do not
follow instructions" and that is why the
manual does not tell you that you can. (Unless
of course Mr. Feldman is the sort that uses
FORMAT when he means BACKUP, or switches the
drive specifiers on a BACKUP command, or does
any of the numerous things that can "destroy"
disks in any DOS system. No manual can save
you from yourself.)

LOOS 5.3 is indeed downward compatible with
all previous releases of LOOS and of TRSDOS 6.
Perhaps what Mr.· Feldman really means to say
is that previous releases are not upward
compatible with 5.3. Under certain limited
circumstances involving password protection,

LOOS 5.1.x will be unable to access files
written on a diskette formatted by version
5.3. This can be prevented by not using
password protection on files that must be read
in this particular (and unusual) manner.

In reply to his complaint about "the lengthy
routine necessary" to set up the RS232 driver
or FORMS filter, I urge Mr. Feldman to read
the documentation on the SYSGEN command, which
is not a new feature. One only has to install
such drivers once, if they are made permanent
by the SYSGEN command. Thereafter they are
automatically set up each time the system is
booted.

You are doing your readers a terrible
disservice when you print misleading reviews
and incomplete information. The advice given
in Mercedes Silver's "Feedback Loop" is
frequently incomplete or dangerous. Likewise,
many of the so-called "hints" that appear in
the "Reader Forum" need to be screened by a
competent person. I have seen advice given
there that is potentially disastrous and could
indeed destroy diskettes or even damage
hardware. I was astonished to see that you
paid someone ten dollars for instructions on
using the REMOVE command of TRSDOS 6.2 that
are fully explained right in the manual for
that system! (Bill Boggess should look at his
manual if he thinks he discovered something
new when he began deleting more than one file
with a single command line.) Jerry Semler's
suggested "abbreviation" for controlling
passwords from Basic is potentially dangerous:
he is overlaying all 8 bits of a system
control flag in order to change just one of
them. Mike Zarowitz made the correct allowance
for this in his original recommendation by
using OR or AND to change only the desired
bit. Altering the others could produce
unexpected or unwanted results.

MSDOS and IBM copycats are dominating the
microcomputer market today. I take it you
intend to enhance this domination by spreading
misinformation about the alternatives. Perhaps
it is time you put a warning on your
publication, 'Let the reader beware!'"

Recovering REMOVED files

(Fm: Jim Owens) Where can I find info on
recovering "removed" files? I just had a major
oops this morning on the 4p. Any help will
truley be appreciated.

Letters to the Editor - 18 - Letters to the Editor

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

files are probably
invoked any writes

(Fm: Bob Haynes) Your
recoverable IF you haven't
to the disk in the meantime!

The process involves changing certain data in
the directory sectors. There are articles
dealing with this subject in the 10/85 and
7/86 issues of 80 Micro magazine which will
help you. If you are not a subscriber, any
large public library will have them.

The second alternative is to use a MISOSYS
product called UNREMOVE which was part of
their PRO-ESP package (discontinued) but now
available within a larger package called MARK
IV ($99). A bit steep just to fix a disk, I'll
admit, but the many other useful tools
included may make it worth considering.

TMQ Literary Section

In order to further assure
of LOOS, I propose the

an urgent basis, of a
poetry section for THE

(Fm: Dave Hardy)
the immortality
establishment, on
literary and epic
MISOSYS QUARTERLY.

To start the section following is the immortal
epic of Don Scarberry from the December 1982
80 U.S.:

"I'm not a DOS lover,
or a DOS lover's son.

But I'll use LOOS
'til a better DOS comes."

on bug reporting, I also found one in MAPPER,
from PRO-MACH2, but the cure was easy.

I am pleased to tell you that SET2RAM works
perfectly with MODELF/III, which is the French
version of MODELA/III (the Germans have a
MODELO/III). It is actually a modified version
because the original, like your network ROMC,
did not allow LOOS 5.1.4 to boot. Of course, I
had to remove those mods that made the clock
run correctly with 5.1.4.

I had to write KI4F/DVR to accomodate my
French keyboard,_but that's not a real problem
as I've been doing it since Model I time. Of
course, I did it for LS-DOS 6.3, THE SOURCE
was a good help.

I've done my home work, to enable ALTDISK,
NAME, UNREMOVE, all from PRO-ESP, to work with
LS-DOS 6.3. I have even improved UNREMOVE to
make it display mod time as well as mod date,
when more than one REMOVEd files are found.

By now, you may wonder, who's that guy out
there in France, doing all those things? Isn't
he giving, sharing, selling software? I have
never earned a penny, nor a Franc, from
computer activity. I am a teacher-researcher
in Chemical Engineering at Compiegne
University. I use a Model 4P for word
processing and data processing (we do a lot of
modelization in Chemical Engineering). I
prefer using BASIC on my Model 4P than FORTRAN
on the VAX!

I am the one and only here in Compiegne, with
Now if somebody can just
rhymes with SOLTOFF!

Report from France

figure out what a TRS-80 Model 4. But I do not feel too
lonely, as I am a long time subscriber to 80
Micro, and to TMQ, of course! I know my
computer intimately, and thanks to you, I can
do what I want with it.

(Fm: Michel Houde) Please excuse this
familiarity, but it is a real pleasure to meet
you every quarter in TMQ. It is also a
pleasure to deal with you. Your order servcing
is FAST! Ten days is the usual time I have to
wait when the Customs don't open the packet, a
few days more when they do. It's actually
faster than getting shirts and trousers for
the kids from most mail-order firms here in
FRANCE!

Further, I usually have the feeling that I get
more than what I paid for. The latest instance
is the RSHARD package, which included Model 4
software, although no mention was made of it
on the flyer included with LOOS 5.3! By the
way, I found 4 bugs in RSHARD6/DCT. While I am

Please allow me to add a few words about my
family. My wife is named Sylviane PULVIN; she
is also a teacher-researcher at Compiegne
University (Biochemistry). Like artists or
journalists, female researchers usually keep
their name when they get married. I wouldn't
mind. She does not really like computing. The
Mac is OK for her. We have three kids, one
girl and two boys, aged 6, 3-1/2, 1-1/2. They
like the Dancing Demon very much.

Letters to the Editor - 19 - Letters to the Editor

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

LOOS Information
80 MICRO review of LDOS 5.3

(Fm: MISOSYS) In
inaccurate
a recent
following
editor.

review
issue
letter

"Mark Reynolds ,
MICROCOMPUTING

response to the terribly
of LOOS 5.3 which apeared in
of 80 MICROCOMPUTING, the

was submitted to their

Review Editor, 80

Rarely have I had the necessity of responding
to an 80 Microcomputing review of a MISOSYS
product. But the June 1987 review of our LOOS
5.3 had so many inaccuracies, that I am
compelled to attempt a correction.

The statement, 'Logical Systems Inc., the
company that developed LDOS, has once again
updated LOOS and added some new features' is
far from the truth. LSI did originally develop
LDOS; however, LOOS has been a MISOSYS product
since March 1986 and the entire 5.3 update was
designed and prepared by MISOSYS. The product
was announced in a press release printed in 80
Microcomputing in its April 1987 issue. LSI
had nothing to do with LOOS 5.3.

Although author Feldman may think that the
major change is the time stamping introduced
into the directory structure, 5.3 was
developed primarily to extend the directory
dating to 1999. Time stamping was just an
ancillary feature. There would have been no
5.3 release generated without the need to
extend directory dating past 1987.

Feldman goes on to state that, 'Unfortunately,
the new directory structure poses a potential
danger to your LDOS 5.1.4 disks. The problem
is that the individual directory entry, being
longer, puts your old disks at risk.' That's
just not true. The directory is exactly the
same size 32 bytes per directory entry.
Besides, there are no dangers posed to 5.1.4
disks. Those disks can be read from or written
to by LDOS 5.3 without any corruption
whatsoever; to the files themselves or the
directory. Of course, after December 31, 1987,
the directory date of a 5.1.4 disk file would
be incorrect if the file was modified while
running 5.3 - but then that's the whole reason
for updating. MISOSYS went to considerable
lengths to design a date extension environment
which was as transparent as possible. You can
read/write from/to 5.1.4 disks with 5.3. When
a 5.1.4 disk file is updated while under 5.3,
the extended date and time fields are not

touched on the 5.1.4 directory. It's really
quite safe.

The DATECONV utility is only needed when you
want to convert a 5.1.4 diskette to the 5.3
extended dating mode. Certainly after December
31, 1987, this issue will be moot if you are
using LOOS. You'll need 5.3.

Feldman's final statements concerning 'the
lengthy routine to set those parameters' when
referring to the serial port and forms kind of
left me puzzled. SETCOM uses an identical set
of parameters as the SET command which
originally installed the serial driver
(RS232T). In fact, the serial driver defaults
to 71E (that's 7-bit word length, 1 stop bit,
parity EVEN, DTR=ON), a common setting for
most folks with just a simple "SET *CL RS232T"
command from LOOS Ready. That's lengthy?
Besides, most users keep a few JCL files
around to automate their device setups. MS-DOS
users have found that the batch 'language' is
extremely useful. It's been that way with LDOS
since 1980.

Now even without a hardware clock that is
keeping accurate time, relative time is just
as important. The significant reason for
keeping a time stamp is to enable checking
which file written today is the most recent,
when a file is written more than once. A
week's use of time stamping will turn anyone
into a convert. And TRS-80 time-keeping is not
that inaccurate.

Perhaps the positive statements in Feldman's
review attributed to the 4-star rating. On the
other hand, the inaccurate statements
concerning risks attributed to the changes in
directory structure may cause a few folks to
needlessly shy away from this important
release of LOOS. And I can't imagine how the
update was attributed to Logical Systems.
Perhaps the personnel shufflings going on at
80 have resulted in a 'green' staff (no pun
intended to Wayne)."

Old Passwords

(Fm: Adam Rubin) The changes in the password
structure for 5.3 and 6.3, and the changes in
5.3's passwords, inspired some investigation.

Under 6. 2 and earlier, there was a ''user"
password for the /SYS files. Those files had
access of "none", so the user password made no
difference anyway, but I recently figured out
that it's (was?) LSINC.

LDOS Information - 20 - LOOS Information

Volume I.iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

For 5.l's passwords, the significance of GSLTD
was relatively obvious, but does anyone know
what RRW3 stands for? (Was LSI founded by two
guys named R. and three named W. ?)

(Fm: LDOS Support jjkd) I hate
but RRW3 predates me. I'm sure
slapper. Roy?

to admit it,
it's a head-

(Fm: MISOSYS) "RRW3" came from Roy, Roger, and
William. There were three of us. We were the
original founders of LSI. Now who's Roger?

What's the version?

(Fm: Theodore Masterton) Ok. I have patched up
my 5.3, sent in my cards, and am about ready
to convert ALL my disks to the two new DOS's.
One problem remains; I have never been careful
about noting which DOS (5.1.4 or 6.2,1) I have
used to format a disk, assumming they were
identical. Now I find out that I can only
DATECONV the disks using the same DOS they
were formatted with! But I can't remember.

Is there an easy way to tell whether a disk
was formatted with 5.1 or 6.2? I do have a
track and sector type disk utility but I am
not a hacker-type myself. Help please!

(Fm: Adam Rubin) There's at least two places
on every 5.x/6.x disk: (1) BOOT/SYS -- Record
2, byte O. (This is always track 0, sector 2).
(2) DIR/SYS -- Record 0, byte CB hex. (This is
the first sector of the directory cylinder).
In both of these locations, you will find the
value 51 hex, 62 hex, or something like that,
which is a record of the DOS used to format
the disk, "51" hex means 5.1.x, "62 11 hex means
6.2.x, and so on.

SET2RAM and memDISK driver

(Fm: Gary Phillipa) Does the MEMDISK driver in
your model 4 LOOS enhancement package work
with memory expansions installed? (XLR8er
and/or AlphaTech?) I'm planning to order the
package anyway, for use on my non-XLR8er
machine, but it occurs to me to ask, since I
note that the LS-DOS MEMDISK/DCT now crashes
the system under XLR8er. Found it out by
accident when I invoked a pre-XLR8er JCL file.

(Fm: MISOSYS) To begin with, the MemDISK which
is part of the Hardware Interface Kit only
permits a 32K or 64K RAM disk using either one
or both of the extra banks in a standard Model
4 (banks 2,3). Second, your Model 4 MemDISK
should not crash at all if you have either an
Alpha Tech board or an XLR8 board installed.
MemDISK might crash if you have someone elses
RAM drive software installed and you force
Memdisk to install. On the other hand, some
other RAM disk software should be locking out
banks 2 and 3 if they are using it. I suspect
some other problem local to your system.

(Fm: Gary Phillips) OK, I'll have to look at
the MemDisk thing again. But I thought what
happened to me was that if the XLR8er was set
to fast speed, and FIXBANK was installed, then
invoking SYSTEM (DRIVE=2 ,DRIVER="MEMDISK")
produced a crash. In any case, I need KI4/DVR,
so my order will be forthcoming when the tax
refund arrives. (No, I'm not trying to use LS
DOS commands under LOOS, just referring to two
different issues in the same paragraph.)

When you install a MemDisk driver under LOOS,
where does it go in storage? Without a low
memory driver area, I assume it goes in high
memory? Then it pages the alternate banks into
the low memory area and buffers data back and
forth?

(FM: MISOSYS) It goes in low memory. That's
discussed in the docs which you get with the
package. The package re-uses some of the area
of ROMC which, of course, is RAM after the
SET2RAM switchover. The cassette routines and
the bootup code memory area is reused,

(Fm: Alan Kaplan) Just a couple of points
about the interface kit: On page 5 of the
documentation, when invoking the memdisk,
memdisk should be in quotations, i.e. system
(drive=d,driver="memdisk").

Also, when I invoke set2ram and later boot the
system via the boot command, I get a "sys
error" and then the ldos prompt. Othertimes, I
get to the debug screen. After recovering from
either of these events, if I boot the system
again the computer hangs and I have to push
the orange button to recover, I have a model
4d.

memdisk installation
I thought I had

README. TXT file.

(Fm: MISOSYS) Yes, the
should have ="memdisk".
already added that to the

LDOS Information - 21 - LDOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

I'll double check [it was on April 28th].
Also, the BOOT command will be inoperative
unless I patch SET2RAM to alter the first 5 or
so bytes of the ROM image. Problem is that
BOOT does a RST-0; however, in the RAM-image
mode, that doesn't bring in the BOOT code
since the ROM startup code has been de
activated. It's on my low-priority list to add
such a patch. With SET2RAM installed, you have
to push the ORANGE button to invoke a re-BOOT.

(Fm: Gary Phillips) Just wondering, Roy. The
Model 4 hardware interface package arrived and
like all your products, works beautifully.
Now, since I'm using a 4P, can I install
SET2RAM, then dump the ROM image to a file and
avoid having to reinstall every time I boot up
in model 3 mode? Once SET2RAM is applied to
the 4P, what I would like to do is dump the
memory image from 0000H through 37FFH to a
file, call that file MODELA/III, and have the
@BANK routines load into the system along with
the ROM image rather than going through all
those motions each time I boot, Does SET2RAM
have to initialize itself with other parts of
the DOS (this is probably a dumb question, how
could it not?) or will the functions work if
they become a permanent part of the image?

I am planning to use the software on my BBS,
which runs on a 4P. I want to use the MEMDISK
as a system disk for faster overlay
operations. The less complex the bootup
procedure can be made, the better, since I'd
like the system to be able to reboot
automatically after a power outage,

(Fm: MISOSYS) The ROM image on the 4P IS a
file; that's the MODELA/III file. SET2RAM will
work on a 4P; however, since it doesn't know
it's a 4P, it still goes through the gyrations
of copying the "ROM image" to higher RAM,
switching to the RAM model III mode, then
copying back the ROM image (which in the case
of the 4P, was still in low RAM), However, the
memory configuration is maintained in a byte
that needs correction, Even if you would try
to dump off a "new" ROM image which has the
banking and memdisk handlers, you WOULD have
to go through the motions because the new
@BANK and @EXMEM vectors were used for the
BOOT initialization. The reason is that the
@BANK and @EXMEM handlers use the memory space
and jump vectors which have to do with the ROM
boot code. That also happens to be why you
cannot (best not) do a software BOOT command
when SET2RAM is installed, Suggest you use a
startup/jcl to have your system "re-boot"
after a power outrage (ooops, outage).

(Fm: Gary Phillips) I am having some
unexpected difficulty with SET2RAM and MEMDISK
in my environment. I am using a non-gate array
4P. Does it matter which version of the ROM
image I load before invoking SET2RAM? (I have
at my disposal the one that came.with TRSDOS
6.2, the one that came with LS-DOS 6.3, and
one of my own generation which is a true copy
of the ROMs in a model 3 ..•)

The reason I ask is that I have experienced
consistent "lock-ups" of the system in BASIC
while running with the MEMDISK installed as a
system disk (I install SET2RAM and MEMDISK,
backup all the /SYS overlays onto the MEMDISK,
then kill SYSO, SYS5, and SYS9 to make room
for BACKUP/CMD as well. Then I do SYSTEM
(SYSTEM=2) and a SYSTEM (SWAP=l,DRIVE=2),
followed by SYSTEM (DRIVE=O,WP=YES).) DOS
commands and utilities work fine in this
environment, but BASIC seems to freeze after
running for a while: keyboard is dead, the
screen unchanging, no response from BREAK, and
only a hardware RESET will recover. From the
times at which this happens, my guess is that
it strikes during garbage collection. I am
using the BASIC that is supplied with LDOS
5.3, and have high-memory modules above
approx. x'F400', all with appropriate headers.
Any guess what might be going on?

Which ROM image did
your 4P? (Or was
the regular 4?)

you use for testing on
development mainly done on

(Fm: MISOSYS) TMQ I.iii has a two-byte patch
to SET2RAM which corrects a problem if you use
BASIC's TIME$. The patch is as follows:

PATCH SET2RAM (D00,50=00 38:F00,50=FF 37)

It's possible that some versions of the
MODELA/III file may not operate without that
patch. I should think that the "style" of 4P
would be irrelevant. The MODELA/III file
should likewise be irrelevant once that patch
is installed. Could the use of TIME$ be the
root of your problem?

(Fm: Jim Hawes) I think this is more
documentation than code, but BOOT does not
work when SET2RAM is in. For some time now I
have had several Mod3 programs which either
use a complex bank switch deal to get a
doubler or copy the ROMs to RAM and go full
RAM in the Mod3 mode. I have always found it
necessary to hit the reset switch rather than
issue the BOOT command. It's hardly worth a
lot of worry and I am sure that anyone having

LDOS Information - 22 ~ LDOS Information

Volume I. iv fflE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

run in to the situation will
button fairly quickly.

find the orange something peculiar(sp??) whenever I issue a
command such as DEVICE or DIR. When given
DEVICE, it will show up all the logical drives

(Fm: MISOSYS) The reason why the BOOT command
does not re-boot your Model 4 (in III mode)
while operating under LDOS 5.3 and the SET2RAM
auxiliary utility is due to the following: The
BOOT command executes a RST O instruction.
This, of course, transfers control to address
O. The code in the ROM image at address 0
turns off interrupts and then branches to the
bootstrap code through vector 3015H. The
technical specifications supplied with our
Hardware Interface Kit mention that SET2RAM
uses the address range specifically associated
with the boot strap code. In fact, address
3015H is reused for the @EXMEM handler.

All is not lost. What needs to be done to
"reclaim" the BOOT handler is to change the
code at address O after SET2RAM is installed.
Here's the old and proposed new:

-----old------
DI
XOR
JP
JP

A
3015H
4000H

-------new------
DI
XOR
OUT
JP
NOP

A
(84H) ,A
3015H

I may look into altering SET2RAM to add this
patch on the fly; however, I don't have it at
this time.

RSHARD's ARCHIVE/RESTORE

(Fm: LDOS Support jjkd) Roy: the new MISOSYS
hard drive support package, does the HD backup
utility for large files preserve the LRL on a
restored file? HARDCOPY/BAS does not, and even
though this can be fixed via COPY (C=N), 'tis
inconvenient.

(Fm: MISOSYS) Yes, it does. Part of the file's
header record is the directory info. After the
restored file is written to the targeted disk
and closed, the directory is updated to match
the 1st 20 bytes of the original DIR record.
Thus, the LRL is preserved even if the
restoral is to an old file of the same name
with a different LRL.

Trouble with DEVICE?

(Fm: William Chao) Got
weeks ago and now I
Mod .4 with a 15Meg

a copy of LDOS 5.3 few
have it running on my
hard-drive. I noticed

(I have 8) but it can't finish in 1 screen so
it pauses for the second screen, on the second
screen, I would get the column header for the
DIR command and then device would finish. On
DIR, sometimes the column header would appear
twice if pauses between screens and logical
drives. Any fixes for this?

(Fm: MISOSYS) Double check to see if your SYS6
module is stored.in more than two extents. If
you backed up the new 5.3 to the old 5,1.4 on
your hard drive, it's possible that the SYS6
module went to more than 2. Also check
SYS7/SYS as it must also be in no more than 2
extents. That may be your DEVICE problem, It's
possible that DIR could do that. I don't treat
it as a bug.

RSHARD from JCL

(Fm: Jeffrey Kline) I finally got some time to
sit down and work with my system in getting
the new driver package installed
(RSHARD6/DCT). The problems are as annoying as
they come. First off, for some unknown reason,
I cannot install the driver via a JCL. I keep
getting an "INVALID ENTRY FROM JCL!" and the
JCL stops. I tried every angle I could think
of to make it function under the JCL
configuration file I had created on the disk.
The second is not too bad but I was hoping to
be able to partition off the drive by head
only as I don't really need to be concerned
with the amount of directoy slots; I use
DISKdisk and PDS. I finally wound up with a
moderate configuration of 6 logical drives and
partitioned by cylinder.

It would also seem that maybe the problem is
only with TRSDOS 6.2 but not so. I also ran
in to the same problem under LDOS 5. 3. 0 ! • I
wanted to not only keep a log of the
configuration in text form but also use that
very same text to re-configure in the event of
a missing or damaged CONFIG/SYS file! Why can
I not use a JCL to install them?

(Fm: MISOSYS) Because there was a bug in
RSHARD. The fix files are in The Patch Corner.
Murphy strikes again!

,------ ------- i

1
1
i~vn·rRtJ1r, 1
~ ..)~th~: i ._ .. -.~ V•{

Po aox 2'!J7 \
i PA&ST0W N. S. \/V. 22 \ 1 ~ l"'.-~-..:,,~-- ~.~· -':• ,..,,,,,...._ ... ,,, ... ~~

LDOS Information - 23 - LDOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

LDOS on Model 4 and cursor speed

(Fm: MISOSYS) There appears to be a large
contingent of active TRS-80 users in
Australia. I believe they number fourth in
size based on our customer base (US, CANADA,
GREAT BRITAIN, AUSTRALIA, •••) • The "Adelaide
Micro User News" is one of a few club
publications sent to us. The June 1987 issue
carried a review of LDOS 5.3 written by Rod
Stevenson. One paragraph of Rod's review
expressed puzzlement over clock speed and its
relationship to cursor speed. Since I am in a
prime position to clear up that puzzlement,
Rod, this one's for you.

Before Tandy had finalized their
implementation of the Model 4 hardware, one of
the few requests for a design change submitted
by LSI and actually accepted by Tandy was for
a faster interrupt rate. The Model III
interrupt occurs at a rate of 30 per second.
Since a Model 4 has to be able to emulate a
Model III exactly, its interrupt rate is also
30 per second when the machine is switched to
the 2 Meg clock rate. When the Model 4 is
switched to a 4 Meg clock rate, the interrupt
rate is doubled to 60 per second. There is
nothing magic about that; ,,the rate changes
when the clock speed changes.

Now a Model 4 can be operated under DOS 6.x
(considered to be Model 4 mode) or under a
Model III OS such as LDOS (considered to be
then in Model III mode). When operating in the
Model III mode, the first 14K of the machine's
address space is taken up by ROMs which
duplicate the Model III operating mode. Thus,
when you boot a DOS such as LDOS, you are
using the "Model III ROMs",

The Model III has routines in ROM which are
more than just the BASIC interpreter. There
are interrupt-based routines which keep the
timer and time values as well as blink the
cursor. The timer counts down from 30; this is
hard coded and unchangeable. The cursor blink
rate is also predetermined by a hard coded
value. Anyone wanting to look at that code
need only disassemble the ROM from 3529H
through 3590H. The routine is accessed every
time an interrupt occurs - unless something
external to the routine traps interrupts and
takes a different action. Since the video
cursor counter counts down from 7 to 0, the
cursor should change state once every 8
interrupts or blink once every 16 interrupts
which is approximately every half second or
two blinks per second. When the clock speed is
changed to 60 per second without any external
adjustment to the frequency with which the

interrupt timer routine is called, the blink
rate doubles because there are now 60 counts
per second.

Any program which does not use .the ROM
blinking cursor routine (such as a word
processor or text editor which is performing
its own overstrike blinking) will be just as
dependent on CPU clock speed since their code
which controls blinking is invariably based on
the speed with which their code executes; at
the 4 Meg clock speed, their code should
execute twice as fast (depending on CPU wait
states). LDOS 5.1.4 booted up at a 4 Meg clock
speed on a Model 4 because LSI had hard
patched enabling the 4 Meg clock rate into the
startup code. On the other hand, LDOS 5.1.4
had nothing added to it which would "correct"
the doubling of the interrupt rate. In fact,
the low and high speed slots of the task
processor would be serviced at twice the rate
expected. That's why the machine's CLOCK
became worthless; it gained 8-12 hours every
12 hours.

Okay, what was done to 6.0 to make the
interrupts uniform regardless of the system
CPU clock speed? A time slice routine was
added at the front end of the task processor.
This little routine rotated a byte value of
55H (at 4Meg) or OFFH (at 2Meg) and serviced
all but the highest task only when the
rotation placed a one bit into the carry flag.
That's a very fast and short way to divide by
two, reset the counter, and test the result
all in one instruction [RRC (HL)]. Using that
routine, all SYSTEM (FAST/SLOW) has to do
besides toggling the hardware is to change the
value of the time slice byte. One more thing
taken care of in 6.x that couldn't be done in
5.x is the operation of the @PAUSE routine. In
Model III mode, @PAUSE is totally in ROM and
unchangeable (unless your on a 4P). Since code
executes twice as fast (approximately) when in
the 4 Meg clock speed, @PAUSE runs twice as
fast and its pausing action is subsequently
cut in half. The @PAUSE in 6.x adjusts for
FAST/SLOW.

Okay, is the confusion cleared up now? CPU
clock speed does indeed effect the blink rate
of the cursor unless some action externalto
the blink routine adjusts for the CPU
clock/interrupt rate.

SYNONYM adapted for 5.3

(Fm: Dave Lamkins) This is a patch for one of
my favorite utilities. You may use it in TMQ,
if you wish. It is a patch for Henry Melton's

LDOS Information - 24 - LDOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

SYNONYM processor from LSI Journal V2n5pl4.
SYNONYM hooks into the overlay loader vector
and looks for the @ERROR overlay number, which
changed from X'86' in LDOS 5.1.x to X'96' in
LDOS 5.3. The patch is easily applied as a
command line patch.

PATCH SYNONYM (DOl,76=96:FOl,76=86)

Superlog and LDOS 5.3

(Fm: Luis M. Garcia-Barrio) SUPERI.OG/JCL is a
modified INSTALL/JCL for SUPERLOG, to suit the
new structure of SYSO/SYS. Feel free to
publish it in your magazine if you find it
appropriate. [Editor's note: SUPERI.OG/JCL will
be printed in The Patch Corner].

KSM bug - for years!

(Fm: Jim Hawes) I am beginning the job of
looking at LDOS 5.3. Most of what I see is
valuable. I appreciate that someone is still
interested in LDOS and the Z80 in spite of the
IBM pressure and the industry (sub)standard
mania. I truely hope the financial rewards are
there for you. Hey that is pure selfish - if
MISOSYS doesn't do well, I know I lose access
to some good programs (and maybe some good
bugs as well).

This has got to be in the "I can't believe it"
category. Do you know or suspect anything
about bugs in the KSM/FLT? I had truely meant
to write you a note on this about 6 months
ago. Please accept my apology - I just got
busy with some other stuff and it got
forgotten. These go all the way back to 1981.
I see that you rewrote some parts of KSM/FLT
and rearranged some stuff but the bugs are
still there. They require highly improbable
circumstances to show up. Both involve
replacement of KSM data. Still after all this
time someone should have reported it.

Bug one happens only when HIGH$ after
installation of KSM is within 10 bytes of a
page end. On re-installation, KSM looks for
the proper place to put the CR replacement
token. The IY register points to an image of
OLD and NEWHI values obtained from the KSM
module. The value at 4DFC is a pointer to this
address group. Now the A register has just
picked up the contents at 4DFD to test. If A
is NZ you have: LD H,A and LD L,(IY+2). These
load addresses refer to LDOS 514. About
24/25ths of the time this is OK but when the
above HIGH$ value occurs, value in A and value

in (IY+3) differ by one. The result is that HL
points one page too high.

If you think that scenario was rare, you will
have to agree that bug two is a winner in
"most unlikely" contest. If you try to replace
a KSM data set with a longer set, the
installation checks the lengths and aborts
right (not always!). If the new data is only
one or two bytes longer, ZAP! Try this - build
two /KSM files that differ in length by one
byte. Install the short one and then attempt
to replace it with the longer one: no error
message. Replacement done - then the first use
leaves smoke coming out of high RAM.

I went through all of this on the 5.3 version
and ran off a bunch of appropriate screen
prints and fixes. I am sure you will have no
trouble in duplicating the test.

Now I could use a small favor. Could you offer
some quick "documentation" on the use of the
byte at 4758H. I pretty much get the gist but
I would value your reply.

(Fm: MISOSYS) Can't believe category! Believe
it! If no one writes or calls about a bug,
especially an obscure one (rarely
encountered), it may never get fixed. Since we
acquired LDOS in March of last year, no one
has given a bug report on 5.1.4's KSM
facility. I can't say whether that was the
case with either LSI or LSC, however, the code
they sent us (5.1.3 source) and the 5.1.4
master did not provide any indication of a bug
report. Can't fix what we don't know about.

I agree perfectly with your analysis of the
two KSM bugs which have existed in KSM for
more years than I have fingers on one hand.
Sure, we revised some of KSM for 5.3. But the
revisions were strictly related to the CFLAG
checking (and copyright messages). On the
other hand, I don't agree with your fix. I
don't like X patches when I can introduce a D
patch.

Your analysis of the first bug was correct.
The DEVTBL stores a pointer to the PRMSAV
region which is exactly 10 bytes higher than
the "new HIGH$" pointer stored at PRMSAV+2.
The initialization code picked up the high
order byte of the DEVTBL pointer and used the
low-order byte of PRMSAV in an attempt to
"point to" one byte before the KSM module in
memory. It then added an offset calculated
from the distance between the logical enter
character and the module origin. This is using
apples and oranges (!) as you pointed out. You

LDOS Information - 25 - LDOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

were also correct in demonstrating a correct
solution to be the use of both the low and
high order bytes from PRMSAV. However, your
solution of changing the "LD A,H" with a "LD
H, (IY+3)" wouldn't fit into the existing code
space. The better solution would be to replace
the "LD L,(IY+2)" with a "LD HL,(2*6+DEVTBL$)"
and then change the offset to use the distance
between the enter char and PRMSAV. This
solution actually discloses about 4 bytes
which could be NOP'd out. By doing the 16-bit
load into HL to begin with instead of the 8-
bit load of the high order pointer, the
pointer is loaded to begin with! Of course,
NOPing is unnecessary because the redundant
code is not destructive.

I will use your second patch without
alteration. You had the only correct solution
(and the reason behind it, I might add -
allowance for the NULL word at the top was
overlooked). Incidentally, that NULL word is
used to store a pointer to the continuation of
a KSM string prematurely stopped because of a
logical ENTER character. See KSMA/FIX in The
Patch Corner.

And now for a word from our sponsor •••
Seriously, though, you asked about the CFLAG$
(byte at 4758H). An experienced DOS 6.x
programmer should have no trouble with this
one. However, I should provide some insight
for the non-6.x'ers. We'll expand on this in
TMQ I.iv, as necessary. Here's a brief intro.

Bit-1: says that @CMNDR is executing. In other
words, when a program begins execution, it can
test this bit, DIR uses it to force O=N
because the sort buffer is not available.
CMNDR is used to invoke "library" commands and
other transients which run in the library
overlay region. LOOS assumes this region to
extend from 5200H-5FFFH. Any program which
needs memory beyond 5FFFH can test the CMNDR
bit to see if continued execution is feasible,
Thus, programs ORG'd at 6000H can easily use
any DOS library command,

Bit-2: says that SYS! is requesting line
input, That's the only time that the bit is
set, MINIDOS's CMD-R uses this to sense if the
key request is from "LOOS Ready". Keyboard
filters which require system overlays other
than SYS! can use this bit to see if they have
to force a reload of SYS!,

Bits-3-7 are adequately explained
MISOSYS QUARTERLY, Issue I.ii.

in THE

300 rpm, keyboards, and other matters

(Fm: Willi E, B. Wald) My LOOS 513 manual's
index refers to a page 4-14A in the MINIDOS
section, but there is only 4-14. Was 4-14A in
an addendum which I missed?

I am 100% behind you on your need to go the
/ MS-DOS route for your BUSINESS. I have bought

my LAST computer from Tandy because of what
they are doing to me as a Model I and Model IV
customer, What you had to say about 80 Micro
was also of great interest to me; they still
owe me a T-shirt that was promised me with
great fanfare in an editorial last year. Also,
by SELECTIVELY quoting from my letter to the
editor, Eric Maloney made me sound as if I
were advocating software piracy! What I said
was that Tandy OUGHT to give away with each
computer purchase an assembler, word-processor
and a spread-sheet program. If I were Tandy's
marketing manager, that is how Tandy COMPUTERS
would be sold because the software development
cost for those programs had long been
recovered and the incremental cost of
producing an extra copy of the same program
would come out of the advertising budget.

It is only now that I am beginning to learn
how to use SAID. I was (am?) apalled to find
that SAIDINS completely ignores the (CTRL>,
(Fl>, (F2>, <CAPS>, and (F3) keys. For a while
I thought of building a clamp for the <LEFT
SHIFT> key to enter text in upper case, but
then TMQ3 came to the rescue and I found out
about the (SHIFT><0> combination. That sure
helps, and I have to learn how to use LOOS, I
use my Model 4 mostly in the Model 3 mode
because 64 chars per line are easier on 58
year old eyes! If your Model 4 hardware
interface kit is half as good as I expect it
to be, it is the one thing I have been waiting
for! You are 100% right in NOT using the 80 x
24 chars in Model 3 mode,

I completely fail to see your point in calling
300.000 RPM a "disaster" in reference to Jack
Decker (he no longer publishes Northern
Bytes). I can see that such a degree of
accuracy is technical overkill but it does NOT
constitute a disaster!!! To me it is more of a
disaster having to initiate KI/DVR and JKL (of
Model I and NEWDOS fame) to be able to use the
screen-print function which is already present
in ROM.

Now please don't get mad at me, I merely want
to make your software more "USERFRIENDLY"!
I hate that word, but nothing else will

you
How
do,
would

In the interest of user-friendliness,
you consider issuing zaps or INSTALL/GMO

LOOS Information - 26 - LOOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

programs that would allow me maximum
flexibility in customizing LOOS? And I do not
mean SYSGENed High$ drivers. Such basics as
JKL belong in LOW core memory where Tandy put
them ditto the printer parameters, etc.
Perhaps I have this NIGHTMARE about a hugh
collection of essential drivers occupying HIGH
RAM where they will be violated by every
program which does not constantly check
High$!! SMOOTH in low core perhaps?

I do not wish to re-invent the wheel, I am
looking for better tires. In that spirit, I am
using POWERSCRIPT. While it greatly improves
SCRIPSIT, it is not as good as it easily could
have been: no ASCII characters below 20 hex in
their translation tables, and that is where
the Model 4 has the European characters. And
again, the extra keys are also ignored. It is
enough to make this Tandy orphan weep!

On the one occassion when I used COMM I found
its command syntax bizarre; to put it
politely. Even if 5.3 Interface does not clear
up 4-8 key sequence commands (excluding
filenames), I am still game. And if some
multiple keystroke commands still insist on
<ARROW>-<LEFT-SHIFT>; my keyboard will then
sprout a small toggle switch which allows me
either 2 left shift or 1 right and 1 left
shift keys! As you can se, I am certainly not
a software engineer but I am determined to
enjoy the use of my TRS-80.

Even as a hardware-hacker of some 45 years
standing, I blanch at the thought of doing
more brain-surgery on this computer. The
expansion to 128K was easily done on the
dining room table; but wholesale butchery of
internal components and grafting of unmarked
(sanded off) chips, with doubtful results, is
not MY idea of adventure. I will wait for the
arrival of an external SOOK RAM drive.

One last remark: I have never been too fond of
any DEBUG, they seem deliberately crippled. My
monitors of choice are TASMON MICROMIND and
MONITOR 5; I still have T-BUG. My next project
has to be the study of various keybaord scans.
Keep up the good work and don't change TMQ!

(Fm: MISOSYS) The 4-14A must have been a
misprint. There is no Appendix which could
have been referenced. The correct number
should be 4-14.

A Model III computer keyboard does not have
the <cTRL>, <Function keys>, nor <CAPS> key;
thus, SAID - which is a Model III program -
would not expect to have them available and

thus does not use them, From your statement
about SHIFT-0, I can almost guess that you do
not have an LOOS User Manual. That kind of
information would be in it in the section on
the KI/DVR. It would also be in a Radio Shack
Model III manual,

I believe the term which I used ala the 300
rpm issue was fiasco, In order to adequately
support LOOS keyboard type ahead, the floppy
disk driver keeps the CPU interrupts enabled
until actual data transfer. The result is that
a disk drive locked on to 300 rpm could take a
very long period of time to perform the data
transfer because 300 rpm is synchronous with
the CPU system interrupt clock. When all of a
sudden, users who have installed those PLL
disk drives become infuriated with LOOS
because data transfer is inordinately slow
compared to the other DOSs, yes, I call that a
fiasco,

You also don't have to initiate the KI/DVR and
JKL to be able to use the screen print
function! Where ever did you get that idea?
You do have to specify the JKL parameter if
you CHOOSE to use the enhanced keyboard driver
provided by KI/DVR; however, the choice is
yours. If you want to make use of <CLEAR>
functions such as KSM, a full ASCII keyboard,
and type ahead, then yes, you do need to
install the LOOS keyboard driver. Since the
screen print detection is an inherent part of
the keyboard driver and because LDOS's screen
print passes graphics values if you have
SYSTEM (GRAPHIC) on, the ROM screen print
function is worthless. But if you don't
install KI/DVR, then you still can use it.

The "customizing" of a DOS is not a trivial
manner. No, I don't think that an INSTALL
command or commands would be feasible to make
it more "friendly". Sorry, but Tandy didn't
put the printer parameters in low memory. The
code for SMOOTH happens to be within the
floppy driver in the resident OS.

HIGH$ is supposed to be checked by EVERY
program using memory, Would you drive off in
your car (with better tires) without looking
at how much gas you had in the tank? When I
worked for AT&T, I had the necessity of using
a company car occassionally. We were taught to
use a safety check list each and every time we
took out a car, The few minute inspection
covered gas, lights horn, mirrors, seat belts,
etc,, and the old Lincoln test (that's shoving
a penny into the tire tread to make sure
Lincoln's head is still visible - does that
work with your pennies?). Sure, a company may
need a little more double checking when there

LOOS Information - 27 - LOOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

are multiple users of a vehicle; however, if
everyone made these kinds of checks, you'd
probably have less broken down vehicles and
less accidents.

KI/DVR was designed for a Model III. The DOWN
ARROW key on that keyboard (and on the non
clustered ARROW Model 4 keyboards) is adjacent
to the LEFT SHIFT key. The use of LEFT-SHIFT
OOWN-ARROW for a CTRL key stems from the
mechanical design of the keyboards in use on
the machines (Model Is and II Is) that LOOS was
designed for. To change to the RIGHT-SHIFT
OOWN-ARROW for control, apply the patch: PATCH
KI/DVR.DRIVER (D01,EC=4E:F01,EC=46). The
KI4/DVR which is part of the Model 4 Hardware
Interface Kit makes use of the Model 4's CTRL
key rather than a 2-key combination; the Model
I and III did not have a CTRL key!

The LCOMM keystroke interface was not designed
for menu-based commands. If you care to
utilize a "user-friendly" (read: menu driven)
communications program, there are about four
still on the market at costs ranging from $40
to $200. LCOMM is bundled as part of your DOS.
You are not forced to use it; it is there if
you choose to learn how to use it. There is no
economic justification for totally revamping
the LCOMM user interface to be "userfriendly"
We are not selling a communications program
with the DOS thrown in for the heck of it. A
DOS is being sold with a usable communications
program thrown in for the heck of it.
Actually, it only takes a few moments to learn
how to use LCOMM.

Just as you have found that there are many
other debuggers around, you should have
realized that a DOS can't be all things to all
people. Most of the features ancillary to the
specific function of a DOS (file management)
are really not going to be elaborate. The
economic justification is missing, the disk
space is missing, the documentation space is
missing, Ninety percent or more of the LOOS
users don't write in assembler and thus have
absolutely no need for DEBUG [99% of Tandy's
customers would have absolutely no need for
having an assembler bundled with their
computers and those same customers would then
consume 50% additional customer support trying
to figure out what the assembler is for!].
That same percentage of users probably don't
have modems and likewise don't use LCOMM. I
would venture a guess that 90 percent of the
Tandy users run no more than three programs -
a word processor, a spreadsheet, and a data
base.

Installing 5.3 on hard drives

(Fm: John P. Lyman) Recently we purchased LS
DOS 6.3 (from LSI) and LOOS 5.3 from MISOSYS.
We appreciate the fact that for the very
reasonable price we paid that you can not give
individual assistance. However, I have tried
to take your advice of 'read the manual' and
'don't bother us,' and after spending several
hours in that mode, I feel I must bother you.

In addition to the TRSDOS system which I have
successfully converted to LS-DOS 6.3 (their
instructions were workable), I have two LDOS
Hard Drive systems to upgrade (5 Meg/LOOS
5.1.3) and 15 Meg/LOOS 5.1.4) and a new Hard
Drive (to be 15 Meg/LOOS 5.1.4) They are
standard Radio Shack systems (HD 0, 1, 2, 3
and Floppy 4, 5). With Radio Shack turning
their backs on us (TRS Model III/4 users)
there is no one to
yourselves.

turn to other than

I have had no success trying to convert the
new (LOOS 5.1.4) system using your very brief
(and inadequate) instructions (page 3, 1/5/87)
and I need help. I simply do not have the time
to take a crash course in hard drive hardware
to learn what your people already know, and I
don't dare go near the existing systems with
conversion in mind.

One other point! Given the (between the lines)
attitude (LSI & MISOSYS) about helping people
who don't pay their dues, I want to say that
we have purchased the appropriate software
with every piece of hardware we use, and we
will continue to support those who are willing
to support us when we need help.

Enclosed, please find a check for First Class
handling of your MISOSYS Quarterly, but please
keep in mind, How can we successfully convert
LOOS 5.1.4 Hard Drive to 5.3.0 with the
following configuration: 15 Megabyte Hard
Drive 0, 1, 2, 3, and Floppy 4, 5?

(Fm: MISOSYS) Perhaps you read too much
between the lines. You are correct in assuming
that MISOSYS cannot afford to provide you with
$50 worth of assistance when you bought only a
$25 product. We would have gone broke a long
time ago if we did that. On the other hand, I
believe I should be able to point you in the
right direction without you having to take a
course in hard drives. What follows is some
information which should have been provided to
you by Radio Shack with your hard disk package
and from information provided in both the LDOS
user manual and the upgrade documentation.

LOOS Information - 28 - LOOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

First, there is no standard configuration of a
hard drive. Even a 4-head 5 Megabyte Tandy
hard drive can be arranged in one of about
eight different configurations. The most
typical configuration of a 5 Meg drive is as
four partitions: each partition being one
head. If your 5 Meg drive is already
configured that way, then the LOOS 5.3 master
disk contains a Job Control Language file
which will install the new 5.3 release onto
your existing drive. The name of the file is
INIT54/JCL and assumes the use of the
TRSHD3/DCT driver. If you are using some other
driver, you will have to make any changes in
the JCL responses to the questions asked by
your driver. The INIT54/JCL file is mentioned
in the README/TXT file.

There is no way I can discern the partitioning
of your 15 Meg drive into 4 partitions; how do
you divide 6 heads into 4 pieces? Even though
your little printout shows the four partitions
as 5Meg, 5Meg, 2-l/2Meg, and 2-l/2Meg, must I
assume that's heads 1-2, 3-4, 5, and 6? When
it comes to re-doing a configuration, one
better not make any assumptions; one better
know •. Thus, I must say that you have to figure
that one out yourself. You had to do it for
LS-DOS 6.3 if you had to redo the
configuration. The procedure for LOOS 5.3
should be quite similar; on the other hand, we
provide instructions for doing that whereas
Logical Systems had absolutely none.

Now here are some general words that may help
you. A Radio Shack hard drive is installed
using a driver. The driver may be named
TRSHD3/DCT (an early R/S driver supporting
only the 5 Meg drive), TRSHD5/DCT (a later
Model III-mode driver supporting the 5-15 meg
drives), or TRSHD6/DCT (a driver for the Model
4 mode). The TRSHD6 driver is equivalent to
the TRSHD5 driver; they both support 5-15 Meg
drives and ask the same questions.

Your first job to install a new DOS version
into your currently configured system is to
make a few backup copies of the new DOS. Since
you may need some free space on the system
diskette, you may have to delete one or two
files. Do this only with one of the backups
you will be using to create your boot disk.
Next, make sure you know what the current
configuration is. That means you need to know
what heads (and how many) are currently
assigned to each drive partition. You should
also know the driver currently being used. If
you don't know, how can you tell? The DEVICE
command can be used to identify the starting
head number of a "rigid" drive [when using the
abovementioned drivers]. For the R/S driver,

the number which appears after the word
"rigid" in the display is the starting head
number zero-based (i.e. a #2 indicates head
3). The FREE command also can be used to
display the number of heads. Write this
information down and keep it. Our MEMOIR
utility can be used to display the names of
resident high-memory modules such as the
hard disk drivers. But you may know what
driver you are using.

A hard drive can be divided up into pieces
known as "partitions". A partition is assigned
to a logical drive slot (0-7) by means of the
SYSTEM command. The exact syntax would be:

SYSTEM (DRIVE=d, DISABLE ,DRIVER="TRSHD3")

[Let's briefly explain these parts. The
"SYSTEM" designates the DOS command. The
parameters are in parentheses. The "DRIVE"
parm designates the logical drive slot to be
assigned the HD partition. "DISABLE" tells the
DOS to "disconnect" any disk driver currently
assigned to the drive slot, if any. That's
because the HD driver initialization will not
allow you to assign a partition to a drive
slot which is already enabled. The "DRIVER"
parm specifies the name of the hard disk
driver.]

Obviously, the driver name noted above would
have to be changed if you are using the
TRSHD5/DCT driver. Also, the drive number,
'd', assigned in the above command cannot be
"0"; it must be in the range 1-7. If you want
to set up a partition to be your system drive,
drive 0, you first have to assign it to some
other drive slot then swap it later.

What happens next is the [installation part of
the] driver begins asking you a lot of
questions. The question sequence is identical
for the TRSHD5 and TRSHD6 drivers but not the
TRSHD3 driver. The TRSHD3 driver will ask you
for the drive address. If you have one hard
drive connected, that would be drive 1
[additional HDs would be 2, 3, and 4. This is
actually determined by a jumper on the hard
drive "bubble" itse 1f. Whoever installed your
hard drives should have them jumpered as 1, 2,
3, and 4 in that order; although any
arrangement works if you tell the driver what
is the jumpered number].

You next get asked the quantity of heads and
the starting head for the partition assigned
to the drive number identified in the SYSTEM
command. The response to these questions
should now be obvious [from the data you
collected with the DEVICE and FREE commands

LOOS Information - 29 - LOOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

(or already knew)]. That takes care of the
first partition. For each succeeding
partition, you repeat the SYSTEM command noted
above designating a different drive slot (i.e.
Id I) •

The TRSHD5/6 drivers will also ask you about
the drive step rate (mostly always zero [or
the smallest number given in the message
prompt], the number of heads (the 5 Megger
[usually] has 4, the 15 Megger has 6), and the
number of tracks per surface (the 4-head 5-Meg
has 153 whereas the 15 has 306).

When you are through assigning each partition
to a distinct drive slot, you are almost home.
From your descriptions of your current
configurations, I suggest you assign the
partitions to these drive slots: 4, 1 ,2, 3.
Drive 4 is where your current hard disk SYSTEM
drive is. You then BACKUP 5.3 to your hard
drive SYSTEM partition via a command such as:

BACKUP :0 :4 (S,I)

If you have read the instructions in the
upgrade documentation, you will note that I
have not told you anything different here; it
just takes a little thought as to what your
current configuration is.

Here's a few more tips. Note
documentation that the BASIC files
BASIC/??? on 5.3 whereas on 5.1
LBASIC/???. This means that after
BACKUP command, the old LBASIC files
PURGEd. Also note that the

from our
are named
they were
the above
should be

upgrade
documentation advises you at this point to
install any other drivers or filters you
normally use (such as the LOOS keyboard
driver). That can be done with a:

SET *KI KI (TYPE,JKL)

At this point, you then can switch the system
drive to be the hard drive system partition
with a command such as (two are shown):

SYSTEM (DRIVEa0,SWAP=4) or
SYSTEM (SYSTEM=4)

which switches drive O and drive 4. Since you
assigned a hard drive partition to drive 1,
you now need to assign drive 5 to be your
second floppy. This is done by issuing the
command:

SYSTEM (DRIVE=5, DRIVER="MJD3")

The prompt will ask you
address 1-4. Your second
respond with a 2.

for the drive I/0
drive is #2 so

Now you get to save the configuration. Your
"booting" floppy disk is still in your first
floppy drive which is now numbered 4 because
of the above SWAP. Issue the command:

SYSTEM (DRIVE=4,SYSGEN)

The configuration will be saved onto your
booting floppy.

As my final remark, I will have expected you
to write down in sequence, the answer to each
question prompted during the installation.
That's to make sure you can do it again. Type
the commands and answers into a JCL file and
you will never have to remember again what you
typed; you'll only have to remember the name
of the JCL file.

The JCL //EXIT gotcha

(Fm: C. M. Mendenhall) I have run into what
appears to be a bug in LOOS 5.3 for the Lobo
MAX80. Using BASIC, when I start a BASIC
program using a JCL file to automatically load
and run the program, the computer displays
"JOB DONE" and branches out of the BASIC
program back to LOOS whenever it receives an
INPUT statement, Would you please send me a
patch to correct this bug?

(Fm: MISOSYS) No patch required - no bug! I
suspect that you ended your JCL file with
either nothing or //EXIT. The correct way to
terminate a JCL file when you want to remain
within a program which uses line input (as
does BASIC's INPUT) is to use the JCL macro,
"//STOP". That terminates the executing JCL
and returns control to the program. Omitting
both //STOP and //EXIT is interpreted as
//EXIT so that the LDOS Ready prompt will
appear rather than having a "blind" line input
request hanging without a visible prompt. When
all else fails, read the manual.

TED Problems?

(Fm: Arthur R. Wynott) The text editor (TED)
is not functioning properly. I cannot exit TED
with <CLEAR SHIFT=>. <CONTROL U) sends the
cursor to the beginning of text, not the
previous page. Left and right arrows do not
work, up arrow gives me a left bracket. Please
repair.

LOOS Information - 30 - LOOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

(Fm: MISOSYS) Here's some answers to your TED
problems. The TED on your LOOS disk worked
perfectly for us. The three-key combination
<CLEAR> <SHIFT><=> worked for us to exit TED.
The <CTRL> <u> key moved up a page in text
(don't forget that a page is 22 lines). Also
the LEFT and RIGHT arrow keys worked properly.

You gave me a clue when you said that the UP
ARROW key gave you a left bracket. I don't
recollect if you related that on the phone,
however, it is a strong clue. TED uses the
LOOS keyboard driver's Extended Cursor Mode
(ECM). ECM can be invoked in one of two ways.
There is a bit in the KFLAG$ which, if set,
establishes ECM; that's what TED does. The ECM
mode can also be toggled by depressing the
three key combination, <CLEAR> <SHIFT>
<SPACE>. The up arrow would generate a left
bracket (5BH) if ECM were not engaged. Also,
the arrow keys would not function for cursor
movement if ECM were not engaged. Thus, I
suspect that you had inadvertantly depressd
that key combination and disengaged ECM.

On the other hand, even if ECM were not
engaged, CTRL-U and the exit combo would still
work. Better double check your procedures.

(Fm: Jane A. Layman) I very much enjoyed
receiving the latest issue of THE MISOSYS
QUARTERLY with the very welcome patches
provided for both LOOS 5.3 and the LOOS 5.3
Model 4 Interface Kit. I have found, however,
that even with the patch to TED/CMD, my
cavalier editing habits can still cause me to
lose the TED buffer contents. I'm just writing
now because it took me this long to figure out
how to reliably reproduce the phenomenon. It
occurs equally reliably with the version of
TED that comes with LS-DOS 6.3.

I lost the buffer contents with both the 5.3
and 6.3 DOS versions of TED when I did the
following: (1) Load TED and type in (or load
in) some text. (2) Delete one character in the
text with <CTRL-D>. (3) Press <CTRL-L> to
chain in another file from disk. (4) Type in
filespec at prompt. (5) When the "Press
<ENTER> to confirm" message appears (my
understanding is that that message should NOT
be appearing in conjunction with the <CTRL-L>
command), press <ENTER>. Pressing enter causes
the text in the buffer to be deleted. The
filespec you typed in on the command line
appears in its place followed by a drivespec.

(Fm: MISOSYS) Thanks very much for bringing
that TED bug to my attention. You narrowed
down the problem very well which enabled me to
find the program bug quite easily.

I have developed a patch for both the Model
III LOOS version and the Model 4 LS-DOS
version. They are both only a one-byte change;
the fixes are in The Patch Corner as TED5B/FIX
and TED6C/FIX.

I have forwarded the Model 4 LS-DOS patch to
Logical Systems Inc for their consideration.
Incidentally, this problem should only have
prevailed with the LOAD command, not the SAVE
command.

Creating a NULL-length file

(Fm: Jack Lottey) I recall under LOOS 5.1.4 I
could CREATE a file with 0 records. However,
with LOOS 5. 3, I always get a "bad parameter"
msg when I try to create a file with 0
records. I am usually doing this in one of the
sections of Profile III+ HD version, say "DA2"
or "/DA3". What is the proper proceedure in an
application like this.

(Fm: MISOSYS) You can't use CREATE to generate
a NULL-length file.

(Fm: Jack Lottey) In the Profile III+ HD
database I needed a file called: database/da3.
Without that file the program would not open;
the opening screen would note that that file
was missing. In LOOS 5.1.4 I would enter
CREATE database/da3:d (Records=O) and Voila, I
had a file that opened up the whole PROFILE
database. With LOOS 5.3, I have discovered
that I can create a file if I specify
"Records =5 11 and I suspect any other number but
the command "CREATE GIFT1987 /DA3: 5
(RECORDS=O)" comes back with the response "Bad
parameter".

(Fm: MISOSYS) It does that under LS-DOS 6.3
(and TRSDOS 6.2, as well). We made it
compatible. CREATE can no longer create a NULL
file, which is what you were trying to
accomplish. You can just as easily create a
NULL length file by the command, "BUILD
GIFT1987 /DA3: 5 <ENTER>" then hitting BREAK as
the next key entry.

LOOS Information - 31 -

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

(Fm: Ray Pelzer) An easy method is the old
stand-by: BASIC. [The statement,] OPEN
"R",l,"GIFT1987/DA3:5":CLOSE creates the empty
file's directory entry with roughly the same
number of keystrokes as the CREATE command
(including the execution of BASIC).

LS-DOS Information
Fix for TapelOO

(Fm: Paul Jaeger) I don't use tapelOO very
often, but occasionally I want to move a bunch
of files from my model 4 to a modlOO cassette
under batch control. When I switched to 6.3,
tapelOO stopped working. I noticed that the
sound of the data was much higher in pitch
coming from the 4 compared to the data from
the 100. I can't figure out why 6.3 would
screw it up, but here is the patch I arrived
at (hours of experimentation) to adjust the
cassette write timing in tapelOO:

.tapelOOl/fix
• Patch to adjust write timing for 6.3
.adjusts the wait timing between bit
• set/reset to cassette port
D06,0D=lA 16 18 03 11 32 2E
F06,0D=l7 12 18 03 11 2F 2B
.Patch to remove "Cassette ready - ENTER"
D00,8D=OO 00 00
F00,8D=CD 3B 2A
.Eop

The ratio of the two changed words seems to be
important, so keep that in mind if you want to
experiment,

(Fm: LOOS Support jjkd) I'm not surprised that
you needed to alter the timing to make TAPElOO
work, What is surprising is that it worked
before and you needed to change it because of
the LS-DOS 6.3 upgrade, TAPElOO has problems
because it is sensitive to CPU speed. It must
be modified depending if you are running on a
M4 with zero, one or two wait states on Ml.

(Fm: Shane Dawalt) Why couldn't a simple, but
small, program be written into TAPElOO to
check the wait states of the hardware TAPElOO
is being run under? I downloaded a program
from one of the DLs which checked the wait
states and reported its findings. I'm sure a
simple ML program could be written to do the
same, After this program determined the# of
wait states in the system, it could insert the
appropriate timing values into the counter

storage locations. (Hum, now I know why I
couldn't get TAPElOO to work.)

(Fm: LOOS Support jjkd) That certainly is
possible, A more elegant method in machine
language would be to test how much work you
can do in a fixed number of timer ticks (which
will always occur at a fixed rate regardless
of CPU wait states).· This info can then be
used to choose timer values that result in
proper operation,

This problem has existed in TAPElOO since day
one of TRSDOS 6.0.0, and Tandy never caught it
or complained to LSI. We had about two direct
inquiries in about two years, and thus never
really considered it a big enough problem to
fix.

Transferring data from a ModlOO is done far
better via RS232, though the tape method could
be useful for sending info from a ModlOO to a
Mod4 via the mail or otherwise when you don't
have both machines together at the same time •

BASIC & @SOUND

(Fm: Paul Jaeger) I have always felt that the
sound command in basic and the @sound service
was fairly useless because it was soooooo
loooooong. Here is a patch for LS-DOS 6.3 to
shorten the tones:

,sysOOl/fix to shorten the sound in 6.3.0
.patch sysO/sys.lsidos using sysOOl/fix
Dl0,83=00 00 00 00 00 00
Fl0,83=CB 24 CB 25 CB 21
• eop

The code is the same in 6.0, 6.1 and 6.2,
although not in the same place, so you can
apply the patch with a file editor just by
locating the code CB 24 CB 25 CB 21. Don't
forget that the patch will not become active
until you re-boot since sysO is only loaded at
boot time,

I have been using this patch since the days of
6.0, so I think it is bugless.

Special Characters

(Fm: Paul Bradshaw) Using CHR$(28) will reset
many things (inverse video, for example). To
test whether the special characters or space
compression codes are in effect do a print
chr$(28);chr$(194);: Then test the POS(O)
function of BASIC. If POS(O) returns a 1 then

LS-DOS Information - 32 - LS-DOS Information

Volume I. iv

the special
otherwise the
effect.

THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

characters are
space compression

in effect, Disk driver function codes
codes are in

(Fm: Pete Betz) Ureka, you've got it! I blush
to say that I never thought to look in cousin
Roy's tome. Thanks to all. (Paul's method is
pretty foxy too.)

But ••• not to be an ingrate, but I'm still
only halfway there. After much experimenting I
don't see any change in $00 when changing
between SPECIAL characters and ALTERNATE
characters, nor is this status included in the
above mentioned documentation. Life will not
be complete until I can distinguish between
these modes too. Any Ideas?

(Fm: Paul Bradshaw) I'm not sure about this,
so I'll look it up later and correct this if
I'm wrong, or there's a better way to do it,
but port x'EC' contains the bit that controls
the SPECIAL/ALTERNATE character set switch.
This can be retreived via an INP(255) as BIT 3
(l=alternate,O=non-alternate). This port image
in maintained in one of the @FLAG$ bytes
(MFLAG$ I believe). It is also bit three of
that flag.

(Fm: Pete Betz) Looks like you've done it
again! The INP(255) approach is giving me the
desired information. I think you had the
significance of the bit reversed I'm
getting bit 3 SET for special characters and
RESET for alternate characters. As one would
expect, the setting holds even when you drop
out into space compression. Very nice.

What I don't get now (probably a dumb
question) is: why am I getting this
information from an INP(255)? Both you and the
Tech Manual refer to port x'EC', which
translates to 236, not 255. In fact, I tried
INP(236) first and got a big nothing. Why 255?

(Fm: MISOSYS) Probably because an input from
port X'EC' resets the interrupt latch. You
really don't want to extraneously reset that.
The Tech Manual on the Model 4 notes that an
"IN from ports FC-FF are a mirror of port EC".
Of course, does anyone realize that the Model
4P ties port FF and port 90H together for
WRITE? That's why a 4P will use the sound port
for programs strobing the cassette port for
sound output to a speaker/amplifier? We found
that one when doing GOBBLER.

(Fm: Adam Rubin) Serious interlude here! I
have two questions about the "proper" method
of interfacing with LS-DOS:

(1) How can a disk driver accept requests for
additional functions? (I.e. other than the
documented functions 0-15.) I've considered
either using an unused register to pass the
information, or using function values 16-255,
but is there a better "official" way?

(2) The module headers of the system device
drivers have useful data that's not obtainable
anywhere else. I know that they shouldn't be
accessed as absolute addresses, but is it
"acceptable" to use @GTMOD and find the
modules' data that way?

Obviously, there's no problem with either
question under the "Radio Shack School of
Programming", but I'd rather use the correct
method if there is one.

(Fm: LSI - Virgil) Why not use the four
unsupported functions (@DCINIT, @DCRES,
@RDHDR, and @RDTRK), that were "provided in
case utility software needs these requests for
communications with custom drivers"? Quote is
from The Programmers Guide to LDOS/TRSDOS
Version 6 by Roy Soltoff. Do you need more
that four additional functions?

As far as I know, offhand, the other four bits
of Bare not used for anything, but without
having Bi 11 here to ask, I don' t have a
practical way to verify this. He told me
something about that once but I have
forgotten. It seems like there was some reason
for not using the top four bits, but I can't
imagine what it would be now.

@GTMOD looks like it was designed for just
that kind of stuff. Wouldn't it have been nice
if Basie's VARPTR returned two pointers like
that? Of course, the very nature of a function
precluded that.

(Fm: LOOS Support jjkd) (1) Virgil's
suggestion is a good one, though I would
probably try to use subfunctions of a single
function, perhaps @DCINIT, rather than
grabbing all remaining functions.

(2) Access to module header data via @GTMOD is
certainly kosher. The only problem is finding
the documented structure of the header. Most

LS-DOS Information - 33 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

are documented in Roy's book, and can also be
found in THE SOURCE.

(Fm: Les Mikesell) Are you planning to write
more than one program that would use the new
disk functions? If not, why not just imbed the
functions in the program instead of using an
SVC linkage? What kind of new functions do
you have in mind? Obviously, nothing in the
DOS is going to use them.

(Fm: Adam Rubin) Thanks for the information!
Let's see ••• if I use function values above 15,
that means there's no SVC for them, and so
I'll have to duplicate the routine to find the
DCT, swap in bank 0, and so on. It looks like
it would be easier to implement new functions
as @DCINIT, @DCRES, etc.

On the other hand, if new functions are
implemented as subfunctions of (for example)
@DCINIT, then any software which expects
@DCINIT to initialize the disk controller may
end up writing to the disk (my new function),
with predictably unpredictable results.
Doesn't sound too good either.

In this particular case, I'm tinkering with a
floppy disk driver, which suggests two
possibilities. One: extend the existing @RDSEC
and @wRSEC to pe~form new (related) functions
depending on bits 6 and 7 of the track and
sector values. Two: use @HDFMT for my new
"write" functions, and abort if it's actually
a HD. Any thoughts on these?

Oh, and can I count on the NMI routine staying
essentially the same in future versions (i.e.
POP return address, RET), or should I stick my
own routine into 66H-68H and restore it each
time?

(Fm: MISOSYS) My suggestion would be to
utilize the @RDHDR SVC. You could use HL as a
pointer to a data region to pick up any set of
values you need; useful since you are deciding
your own protocol. @RDHDR has the advantage
that no software could expect the DOS to
suppport that function (since it doesn't). Any
utility package actually needing a RDHDR
function needs to write their own disk driver
to support it.

As an aside,
perform a disk
contained in
determined to
folks didn't

I had hoped to add an SVC to
function call using the value

the B register; but it was
be fluff overhead since most
need that facility. The only

modules in the DOS which set up their own disk
driver interface are BACKUP and FORMAT. They
could have used the un-implimented SVC; but
why use up another four bytes; memory is
always at a premium. The existing disk driver
interface architecture has served us well for
a few years now.

IBM PC Diskettes

(Fm: Kevin R. Parris) I have what I think is a
rather simple application: I want to read a
sector from an IBM-PC single-sided diskette
(180K, PC-DOS 2.1), using the factory original
diskette drives in my TRS-80 Model 4 Portable,
and a program running under 6.x TRSDOS (btw,
jjkd, there is one possible solution to your
concern about "trailing periods" in the text
at the end of a sentence - put the version
number in front of the name). I have THE
SOURCE and THE PROGRAMMER'S GUIDE, and the
MISOSYS PRO-MRAS assembler system (all
purchased from MISOSYS), and a First Class
Postage Subscription to TMQ; now, the GOTCHA.

I also have a great deal of ignorance as to
the workings of Z80 processors and companion
diskette drive controllers. I understand the
IBM 370 processors and MVS Operating System
well enough but this is relatively new to me.
I have tried the (to me, at least) obvious
things: @RDSEC says data record not found;
@RDSSC turns on the drive light and never
comes back, only way out is the RESET switch;
@RDTRK, true to the documentation, does not
read a track.

I do not want to invest in a commercial
program right now- I do not need PC Disk
directory handling, or multiple TRS80
Operating System format support, or BASIC
token conversion. I just want to read a
selected PC Disk sector so I can put the data
from it in a TRSDOS file in the other drive. I
have not studied it very closely yet (in The
Source), but I do not see why @RDSEC locks up;
I do know that the PC uses 9/512 sectors while
TRSDOS uses 18/256, and suspect that has
something to do with the problem. A way to
implement support for @RDTRK would be OK- I
could take the sectors apart (I think) without
too much trouble. BTW, (NOT a Complaint, just
curious) what were the reasons for not
including @RDTRK support in 6.x TRSDOS? And if
it were included, would it help me with this
project? Any assistance will be greatly
appreciated, you may be sure! I confess I have
made little contribution here, and have asked
several questions (most of them answered very
well), but with so much help from so many

LS-DOS Information - 34 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

people, one day I will learn enough to do

something really useful! Thanks, Everybody, in
advance.

(Fm: Adam Rubin) As you may know, each sector
on the floppy disk is preceded by a header,
which gives (among other things) the sector
number and the length of the sector (128, 256,
512, or 1024 bytes). First, let's look at how
@WRSEC works, and why it will work on an MS
DOS diskette.

Once the floppy disk controller (FDC) has
found the requested sector, it also knows that
sector's length. It then asks the CPU for the
data, a byte at at time, until it's been given
all the data for that sector (based on the
length value in the sector header). Once the
FDC has been given all the data, it sends out
a signal to tell the computer that it's done.
In the M4, this signal is a non-maskable
interrupt (NMI). Anyway, this (i.e. @WRSEC)
works properly for any valid sector length.

What @RDSEC does in 6.x is assume that every
sector is 256 bytes long, so the CPU asks the
FDC for data 256 times, and then assumes the
read is done. However, if the sector is longer
than 256 bytes, the FDC realizes that the CPU
hasn't asked for all of the sector's data and
(correctly) signals a 'lost data' error. 6.x
is designed to retry a lost data error
indefinitely, and of course each time is
another lost data error. Thus, it keeps
trying, until you press RESET.

I don't know why @RDSEC is implemented this
way. I once asked jjkd, and he said it was
needed because of the interrupt structure, but
I don't see why that would matter for reading
and not for writing.

If @RDSEC were implemented in the same manner
as @WRSEC, adding 'read sector header' and
'read track' would have been fairly
straightforward. However (as I learned from a
discussion here), @RDTRK isn't very useful for
reading sector data. (Nothing to do with TRS-
80s; it's part of the FDC's design.) The FDC
interprets several valid data values as sync
bytes (is that the right name?), assumes that
it's at the beginning of a sector, and the
rest of that sector's data is garbled.
(Remember that data is stored on disk as a
stream of bits, not bytes.)

(Fm: Les Mikesell) The Trsdos 6 floppy @rdsec
is hard coded to stop reading after 256 bytes,
so if you want to read 512 byte msdos disks,

you will have to write a substitute. RDTRK is
not generally considered reliable 1n DDEN (and
is not needed by the OS), so it 1S not
implimented.

The infinite retry on lost data errors is to
allow interrupts to be kept on between finding
the sector header and the start of the data.
This makes it fairly likely that the read will
be interrupted by the heartbeat clock, and
since the disk revolution speed is an even
multiple of the interrupt rate, if it does it
once it will take a while to recover. I
suspect the 259 byte limit was imposed by
someone thinking about the chance of
accidentally reading a 1024 byte sector into
the DOS 256 byte buffer. However, the lockup
from the retries is not much better. The write
code lets the FDC interrupt out when the
command completes because it must also handle
@wrtrk.

(Fm: Gary Phillips) You need Machine Language
Disk I/O and Other Mysteries by Michael
Haguer, published by IJG, if you want to learn
to program disk controller operations at the
assembly language level. It IS possible to
read IBM PC diskettes in a model 4 or even a
model 3. Commercial software to do this is
available from HyperSoft and/or PowerSoft at a
very reasonable price ($50. see SO-Micro ads).

IBM diskette formats use 512-byte sectors,
while TRSDOS/LS-DOS/LDOS uses 256-byte
sectors, so not all the disk i/o primitives
will work directly. I once read PC-DOS
diskettes on a model 3 using only my bare
hands and DEBUG, but a small zap had to be
made to the DOS so it would read the full 512
bytes. Now I use SuperCross and I'm glad I do!

@RDTRK is not very effective with the Western
Digital controllers and standard floppy disk
formats. Although there is a hardware command
code that tells the controller to read an
entire track, due to the way synchronization
is handled at the hardware level the only
guaranteed correct data you will retrieve is
the sector address marks. The rest is usually
"phase-shifted" and appears as garbage. Such a
function is useful for determining the
structure of an unknown alien diskette, but
useless for actually reading the data located
thereon. I would have expected @RDSEC to work,
if you have coded your program correctly.

(Fm: Adam Rubin) In this case, the two topics
(adding disk driver functions, reading 512-
byte sectors) are related, since the program

LS-DOS Information - 35 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

I'm working on (a looong-term project!) will
copy files to/from MS-DOS disks. To read 512-
byte sectors, I followed the method LS-DOS
uses for writing sectors (i.e. loop until
NMI), and haven't noticed any problems. That's
why I wonder about the DOS' s method. (I admit
reading 1O24-byte sectors into a 256-byte
buffer isn't a good idea!)

Once I had @RDSEC working well enough, the
only additions needed for @RDHDR and @RDTRK
were the appropriate FDC commands in place of
"read sector". In the 'format MS-DOS disk'
section, I'm using @RDHDR to determine if the
disk is already formatted, and thought that
the multiple-sector read and write commands
would be a quick way to fill all the sectors
with OF6H and then verify them. I can't write
OF6H using @WRTRK, and figured that the sector
layout of SS MS-DOS disks (every track is
1,2,3, ••• 9 is that 'no track skew, no
interleave'?) would otherwise require 18
revolutions to read and verify all the sectors
on a track. I realize the multiple-sector
commands lose bytes, but that doesn't matter
in this case, does it?

Anyway, I don't have anything else in mind
that would use @RDHDR or @RDTRK, but figured
it would be easier to implement the whole
thing as a disk driver in case I ever wanted
to use them in the future. What exists now is
the MSfile program installs and removes my
driver each time the program is run, so my
program can use @RDSEC regardless of which
drive is being accessed. (In fact, @WRSEC and
some other requests are passed on to $FD.)

Including the driver directly in the program
(which I've sort of done, I suppose) might be
the best way, and I'll certainly have to think
about it. Do you, or anyone else, have any
comments on anything here?

(Fm: LOOS Support jjkd)
what you want. It does
the WD FDC controllers,
density. Nothing in the
would have been excess
work anyway.

@RDTRK would not be
not work very well in
especially in double
OS needs it, so it

baggage that wouldn't

You basically need to code a replacement for
@RDSEC as noted in the other replies. Note
that MS-DOS sectors are numbered from one to
nine, where LOOS/LS-DOS sectors are numbered
from zero to seventeen. Trying to read sector
zero on an MS-DOS disk won't get you very far
at all.

There is no interleave on many MS-DOS disks
because real IBM DOS on a real IBM PC (or
close enough) can keep up with 1:1 interleave
on a multiple sector I/O request.

One trick you can use to eliminate the problem
is to write and read verify the sectors in the
fo I lowing sequence 1, . 3, 5, 7, 9, 2, 4, 6, 8
instead of 1, 2, 3, 4, 5, 6, 7, 8, 9. You'd be
doing the interleave in software instead of by
the format, as in some releases of CP/M.

(Fm: Les Mikesell) The best approach for
multi-sector i/o would be to make up your own
interleave table for the order of sector
access (jumping around in the buffer as
necessary). This would give a speed-up during
file access as well as the format and verify.
You might kick around the idea of making a
resident driver that would let TRSDOS
read/write directly to MSDOS formatted disks.
This could be done by faking the i/o to the
TRSDOS dir cylinder while actually writing the
MSDOS directory. I don't know if it could be
done in a reasonable amount of memory, though.

(Fm: Adam Rubin) I never thought of that
before ••• but I'll do it! Let's see ••• four
revolutions per track, times forty tracks, is
32 seconds, which sounds fast enough to me.

An interleave table would
improvement, and I'll use
routine.

definitely be an
it in the format

One of the first things I considered was that
many files need some sort of conversion to be
usable when transferred, such as CR to CR/LF.
I decided to pass the file through a filter as
it's moved, so (CONV="TEXT") on the command
line would load TEXT/CNV and call it for each
byte read. With this byte-at-a-time approach,
I don't know how much faster multiple-sector
I/O would be for file access. Also, I'm not
sure how useful direct access to "unconverted"
MS-DOS files would be. What do you think?

(Fm: Les Mikesell) If you are at all concerned
with speed, use full sector I/O on the TRSDOS
disk and read at least lK (a track would be
better) at at time. Then do any necessary
conversions in memory before writing out to
the MSDOS disk using the interleave table. It
would probably also be worthwhile to buffer as
much as possible in memory (even multiple
files), and allow swapping disks in the same
drive. Remember that most TRS8O's only have
two floppies. As for the file conversions, we

LS-DOS Information - 36 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

use the LOOS version of Wordstar and often
need binary conversions between these disks
and MSDOS since the file format is identical.
Most other files need ,.t.he._,_CR/LE-.convers ions,

R ~ · ·-- --~. -~,,.;,,;.~.,-:.i\t..:,,i::-J.1- •'". 0 --r~

though. ! -s 1/¥"~ '~"f'i\i :i ;, , . J

t: --' , ; c~✓~ ;L r)! ;Jll j
(Fm: Adam Rubin) We~1;,.r .. ~)[;-;tl!OX~4.s~. t~v 1 iiles
around, and timed them-;---anryou~e,,~tely
right. I'm already using a I-sector buffer for
both the source and destination, so expanding
both to an entire track should be fairly
simple. Swapping disks in a single drive would
be useful too, but something like COPY's (X)
parameter (with appropriate overlays SYSRESed)
would serve the same purpose and probably be
easier to implement.

It turns out there's something else that's
taking up almost half the time of an MS-DOS to
TRSDOS transfer -- allocation. "Programmer's
Guide" has an example of that, and I suppose
the value in the MS-DOS directory would be a
good guess for its length, so that doesn't
sound too hard either.

So ••• that oughta
bit, at least.
with my next few

keep me busy for a little
Thanks again .•• I'll be back
dozen questions on this soon!

(Fm: LOOS Support jjkd) Transferring files in
a "raw" or "binary" mode as an option is
indeed useful. Any movement of an .?Q?, .LBR
or now .ARC file, for example.

What is the format of the CNV file? Is it
actually executable code? Perhaps a
translation table definition file might be
easier to change, even though not as flexible.
If the translation table approach is used, an
input format like MAXLATE's to allow multiple
byte output for an input byte would ease tasks
like CR/CR+LF.

(Fm: Les Mikesell) Yes, it is also worthwhile
to write the last sector first on the TRSDOS
side so all the disk space will be allocated
at once instead of accessing the directory for
each gran. Writing dummy data will also work
if the real data for that sector is not
available yet.

(Fm: Adam Rubin) I have a related question or
three. (Don't I always? <grin>) I discovered
that the DOS floppy disk driver uses the
"directory cylinder" value to determine when
to start write precompensation, so my MS
DOS/TRSDOS file moving project uses 20 (14H)

for the MS-DOS disk's "directory cylinder".
(It uses the DOS @WRSEC, and its @RDSEC
updates the "current cylinder" value.) Since
some other DCT values are altered, the program
sticks O in the "directory cylinder" value
when it's done, to force logging the next time
the drive's accessed.

Questions: Is cylinder 20 a good place to
start write precompensation on an MS-DOS disk?
Will what I am doing cause any problems? Is it
all necessary? Is there a better way?

FORMS questions

(Fm: Dick Houston) In using the FORMS command
with say a BASIC program, it works OK for the
first page, but merely starts out in the
middle of a page or wherever it left off on
the last run when I run it again. Does anybody
know how to reset the line counter?

(Fm: Ray Pelzer) I may have missed a
discussion of this once before but maybe
someone can tell me if the following was an
intentional design or a missed bug:

When the FORMS filter is installed and you
attempt to set the MARGIN, you will get a
"Parameter Error" if the CHARS setting is OFF.
I was messing with a file I wanted to print at
12 pitch and loaded FORMS to shift the
printout over 10 characters rather than
messing with physically shifting my forms in
the printer. Got the error message upon
issuing "FORMS (M=lO)", but "FORMS
(C=l32,M=l0)" worked just fine. The REAL
kicker is that AFTER loading up the margin, I
could go back and do a "FORMS (C=OFF)" and the
margin stayed loaded properly!

Am I losing my mind, or is it already long
gone?

(Fm: MISOSYS) That's how its supposed to work.
You must have a chars-per-line value before
setting a left margin.

(Fm: Alan H. Pesetsky) I'm using the forms
command to set the number of lines printed per
page. If I interrupt the printout and then
reset my paper to the top of the page manually
or by the printer Form Feed button how do I
tell Forms/flt to reset to line 1 for the next
print out? (I'm not using basic - printing out
the PROWAM CARD/DAT file.) Hope I just didn't
miss that bit of information in the manual!

LS-DOS Information - 37 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

(Fm: Paul Bradshaw) Sending a CHR$(6) will
reset FORMS's internal page counter, To do
this easily (since you mentioned that you have
PRO-WAM) use the program PRCTRL,APP that you
can find in DL2 here in LOOS, Or use
PRCTRL.CMD. Also, if you get The Misosys
Quarterly, there was a program in the first
issue (and duplicated in the second issue)
that allowed you to send characters to your
printer by specifing their ASCII codes.

(Fm: MISOSYS) You don't use the FORMS command
to reset the line counter, The command LPRINT
CHR$(6); will reset the system line counter to
top of page.

(Fm: LOOS Support jjkd) If you use KSMPlus,
you can advance the paper to the next perf by
using <clear><shift><T> instead of manually or
at the printer. That will keep the printer and
FORMS in sync.

If you can get out to DOS, or to someplace you
can issue a FORMS command, re-issuing a FORMS
command with the same number of lines should
also re-set the counter. Might be easier than
getting to where you can do a CHR$(6);

(Fm: Les Mikesell) Printing a CHR$(6) will
reset the FORMS line counter, but if you are
able to do that, why not just send a form-feed
in the first place instead of moving the paper
manually?

(Fm: Alan H. Pesetsky) Using PRCTRL/CMD I
tried sending @6 to the printer to reset the
internal FORMS page counter -- didn't seem to
work, I have been using PRCTRL/CMD (never got
around to getting the /app version) to send a
form feed and then would set the paper to the
top of the page manually. Was wondering how to
do it the other way round.

I assume that LPRINT CHR$(6); only works from
basic. Was looking for a solution from DOS.

KSMPLUS is a good idea, also re-issuing my
forms set-up sound even more convenient as its
in a /jcl file. This problem came up when I
was-printing out my Pronto card/dat file in
various ways. I usually have KSMPLUS disabled
then because my current KSM file using the
function keys which conflict with PRONTO.
Thanks to all for your suggestions

When I think of it that's what I do. But
sometimes I interrupt the printing -- move the
paper up to tear something off - then reset
the paper, etc. Just looking for a way to make
sure that the computer knows that it's the top
of the page now!

(@*2Fm: Gary Phillips@*O) From DOS level you
can always try: COPY *KI *PR [followed by]
<CTRL-F><SHIFT-CTRL-@>. That should achieve
the same results as the LPRINT CHR$(6). Clumsy
but it works.

(Fm: Paul Bradshaw) I have no problem sending
a CHR$(6) to FORMS using PRCTRL, If you wish
to reset the printer to top of form, use the
PRCTRL keyword "SETTOF" -- this will reset the
printers counter. A chr$(6) will set the FORMS
internal counter, and all will be in sync.

(Fm: LOOS Support jjkd) Your problem is that
you are manually advancing the paper to tear
it off. Don't. Your BASIC program can advance
the paper via the command, LPRINT CHR$(12);,
and then you tear it off. This will keep all
five (the printer, the paper, the FORMS
filter, your program and you) happy and well
synchronized. If you insist on manually
advancing the paper, you can put a LPRINT
CHR$(6); in your program wherever you want the
FORMS line counter reset to the top of the
page. Then however, it is the responsibility
of the operator to check and confirm the paper
position whenever this is used.

As a final gotcha, if you are using a printer
with hardware formfeed capability (FORMS with
FFHARD), this is not sufficient. You need to
send a LPRINT CHR$(12); to the printer, it
will advance to where it thinks the top is,
and then prompt the user to manually advance
the paper to the proper position to force
synchronization.

The MARGIN parameter requires the CHARACTERS
per line parameter in an attempt for the
filter to know when to apply the margin to
lines that wrap the right margin. This, taken
to its logical conclusion, would require that
setting C to zero also set M to zero. This
must have been overlooked. If you do for some
bizarre reason not want wrapped lines to also
be indented to the margin, we can look upon
this as a fortutious occurence.

LS-DOS Information - 38 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Accessing the RS232 port from BASIC

(Fm: LOOS Support jjkd) Welcome to the
LDOS/TRSDOS 6 Forum! This here is the most
experienced group of folks you 1 11 ever find
when it comes to LOOS, TRSDOS 6 and the Z80
family of Tandy computers.

As I recall, the question was RS232 output and
perhaps input in BASIC. For example, from
TRSDOS 6, before entering BASIC, do a

SET *CL COM/DVR

This installs the OS support for the serial
port. Now, from inside BASIC, you can do this:

10 SYSTEM"SETCOM
(W=7 ,P=Y ,EVEN, DTR, BREAK=O)"

or whatever other parameters you need to talk
to the device in question. You may also change
these on the fly as necessary simply by
repeating this line as needed with the
appropriate changes, To actually go ahead and
produce output, you can do this:

20 OPEN "o ", 1, "*CL"
30 PRINT #1, "This is a test"

Remember that BASIC will provide a CR after
this output, but no linefeed. If you want to
provide output to both the display and the
serial port, one at a time, you can do this:

100 GOSUB 1100 ' Initalize for output
110 DEV = 1: A$="This will go to the
RS232":gosub 1000
120 DEV = 2: A$="This will go to the
display": go sub 1000

1000 PRINT# DEV, A$:return
1100 OPEN"O", 1, "*CL":OPEN"O", 2, "*DO"

A minor modification of this will allow you to
do either output with no CR, output with both
CR and LF, or output to both devices. When
you've digested this, we'll go on to serial
input,

The problem with input is that
routines in BASIC are hosed up.
choices:

the byte I/0
There are two

(1) Link the keyboard to the RS232. You can
then scan for RS232 input via INKEY$. The
problem with this is that you can't
distinguish between keyboard input and RS232
input, but is usually adequate for bulletin
board programs and the like.

(2) Use at least a little assembler for input,
With the tools available in the new 6.3.0
release, you can use the SVC interface USR
call without really writing any assembler at
all.

LS-DOS 6,3 questions

(Tim Clute) (1). Why wasn't QFB/cmd added
instead of the new DISKCOPY/CMD? (2). What is
the reason for the distribution disk only
having 2 floppies enabled? Love 6.3 hope that
some of the suggestions make it into 6.3.1 or
6.4 <grin><hint>

(Fm: MISOSYS) Only 2 floppies are enabled on
the 6.3 distribution disk because only 2 were
enabled on 6.2, Most Model 4 folks have only
two floppy drives. If drives 2 and 3 were
enabled, then there would be some delay during
global search for the system to ascertain that
you had no drive 2 nor 3. Thus, it makes sense
to disable 2&3 on release, That speeds up
global search for most users. It's quite easy
to ENABLE 2 and/or 3 if you need to using the
SYSTEM command,

I believe that LSI chose to implement a
"DISKCOPY" instead of the more recognizable
"QFB" for a few reasons. One, they licensed a
"QFB" to Tandy in the Utilities Disk sold by
Tandy under license from LSI (that may be the
prime reason). Second, "diskcopy", at least in
name, is the same name as a similar utility
under MS-DOS. I personally would have opted
for them to call it QFB since LSI had already
bundled a "QFB" with LDOS 5 .1.4. They had
already established the function association
with a name, It should have remained "QFB".

(Fm: LOOS Support jjkd) The functions of QFB
and DISKCOPY are virtually identical. The
reason for the name and appearance change are
most likely that LSI licensed a (poorly
marketed by RS too) version to Tandy, and
DISKCOPY is what the equivalent tool is called
in MS-DOS, I know, I know, who cares about MS
DOS, but anything that reduces the sheer mass
of command differences when there is no major
overriding need for a di:fff-itF~rrc"e---±s-,-.a-=·pl-11-s--j.n
my book. I t? \i'() Tn· ~ ; .~. I

I 'J,,J 1 Li I h i i I ·1 l ! - ·l -v U,

f 1°0.BOX237 l
DEBUG Help ! FADSTOVv N <:; w ? 2, , l ~- . . -· ..:.~-=-~-1
(Fm: Ken Kane) I can't find that thread on
GOOD/BAD docs •.• but the Model 4 manual gets a
LOW rating for its docs and examples for

LS-DOS Information - 39 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

DEBUG. The 'E' command is poorly explained.
Hunt and peck, (about an hour of work but oh
well •••) shows that the address must be
followed by a comma. No mention thereof, and
no example. Quality control, anyone?

I am running through the SVC examples at the
back of the Tech Ref Manual. Example pgm B has
a series of prompts and @KEYINs and they keep
grabbing control of my single stepping. My
next 'I' entry gets handled as if it were a
response rather than a DEBUG command. Is there
a ready way to regain control?

Another way to look at the problem ••• in DEBUG,
what is the easiest way to simulate keyboard
entry at a prompt and continue single
stepping?

(Fm: MISOSYS) The best way to satisfy KEYIN
response is to use the 'C' debug command. When
the KEYIN is called, a "C" will be left on the
screen. If you are looking at the screen, that
"C" will remind you that you are keying in. If
it's a @KEY call, then you have to slowly use
the 'C' command, otherwise you will get the
result you mentioned. Don't forget that 'C'
works exactly like 'I' for everything but
CALLs. What you really need is to have PRO
DD&T's Debug Disassembler resident so that the
screen display also includes the current
instruction. Of course, PRO-DD&T is no longer
available as a separate item but is available
only bundled in the MARK IV Collection.

(Fm: LSI - Virgil) I'd aggree that the 'e'
command of the extended debugger is not
explained as well as it could be. Just using
the following for the example would have
helped.

Eaddress,byte

BTW, <spacebar> works as
the delimiter between the
contents.

Cursor strangeness

well as <comma> for
address and the new

(Fm: LSI - Virgil) There was a bug in the
previous versions of BASIC that has been
fixed. Trouble is that it was such nice bug
and a lot of people miss it. When execution of
a program in basic is ended, and you are
returned back to the BASIC Ready prompt, BASIC
is supposed to tidy a few details up, just in
case the program left a mess. One of those
details is to turn the curs.or on. So when you

do a PRINT CHR$(15); from the BASIC Ready
prompt, it looks like nothing happens. Indeed
the net result is that you are back where you
started. But put exactly the same statement
inside a program, followed by a statement that
should present a cursor, INPUT A$ for example,
and the cursor is gone! Then comes the end of
the program and the BASIC Ready prompt,
complete with cursor.

The only case that I can think of that is
still a problem is if the break key is hit,
interrupting the program for some reason, and
the program is resumed with the CONT command.
CONT does not and should not turn the cursor
off, even if it was off before the BREAK. Of
course, the programs that have to
BREAK could easily turn the cursor
often, just in case.

One-character device names

survive a
off more

(Fm: Shane Dawalt) I was SETting a filter into
memory under LS-DOS 6.3, but I messed up on
the devspec. Instead of typing "*SS" I entered
"*S". The DOS didn't complain so I didn't
investigate it. I filtered the *KI using *S
and this too worked fine. However, when I
executed the DEVICE command, the device map
was screwed up. This is what it showed: (Note:
the DOS was freshly booted, no other programs
had been executed prior to this
SETting/FILTERing.)

*KI <1fa [*S*DO <=> X'OB88'
*PR => X'OEOl'
*SI <1fa *KI
*SO <=> *DO
*JL => NIL
*S

The filter module set to *S worked perfectly.
It filtered the *KI device as it should have.
The device table just doesn't show it
correctly (notice *S has no route/link
information behind it). Also notice the *S*DO.
Looks as if the *KI data line terminated
without a x'OD' before listing *DO. I was able
to duplicate this problem by routing a device
(*PR) to another 1 character device name (*Z).
(*Z had been previously routed to a file, the
filename wasn't displayed in the DEVICE
listing.) Again, the route worked fine.

According to the
devspec must be two
LS-DOS fuss when
devspec?

operations manual, the
characters. Why doesn't

given a one character

LS-DOS Information - 40 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

(Fm: LOOS Support jjkd) If the docs say two
characters required, and DEVICE barfs on a
single character devicespec, then it does
indeed make sense that SET shouldn't allow
anything other than two characters. In my
book, I'd call this a bug, even though it
probably has always worked this way. Do you
have a copy of 6.2 handy to try?

(Fm: Shane Dawalt) I don't have a copy of
6.2.1 but I do have a copy of 6.2.0 (isn't
that strange). I attempted the same device
setup on the 6.2.0 system and the same results
were found.

I wrote a program which did some fetching of
device specs from the DCB. I never considered
the fact that only 1 character could be in a
devspec (since I didn't think that could
occur). The program stuffs the two characters
inside of a message string before displaying
the message with the @DSPLY SVC. I noticed
that when the program comes to a 1 character
devspec, the message up to and including the
first character of the devspec is displayed,
but subsequent characters of the line are not.
The cursor is positioned at the "end" of the
line as if an ETX had been encountered, but
actually a 'OO'h is encountered. But that
raises another question: doesn't @DSPLY
terminate the displaying of a line when either
a CR or ETX is found? This implies any other
control character is displayed without
termination of the print line.

(Fm: LOOS Support jjkd) As I suspected, this
is not a problem created by 6.3.0, as it has
been there all along, most likely since 6.0.0
without anybody finding it. I imagine that
Virgil will put it on the list for future
attention, but I certainly wouldn't consider
this something bad enough to force a new
release.

As far as @DSPLY goes, yes, the documented
termination characters are ETX and CR, and
anything else below X'20' should be output for
display. I can see taking a zero as a
terminator also, it is a useful construct. It
was most likely just never documented.

Even though you can think of a zero as both
X'OO' and as -@, I don't consider it as a
"real" control character. Far too many things
treat a binary zero as a special case. For
example, it does have a special meaning to the
*DO device that I'm not sure is documented
anywhere. Who all knows what it is?

(Fm: MISOSYS) Taking a zero as a terminator is
against the use of a zero to imply that the
next character has a value of 0-31 and should
be displayed instead of being treated as a
control character. Of course, the bug with
that would be that the @DSPLY handler won't
trap and pass the next character if it turns
out to be a ETX or CR.

(Fm: LOOS Support jjkd) Allowing a X'OO' to
terminate an @DSPLY string output would not
preclude the ability to use a X'OO' with @DSP
or @PUT, of course. Ana, of course, it should
either be fixed or documented, depending on
whether it is considered "broke" or "mis
documented", right Virgil?

(Fm: MISOSYS) I doubt it immensely to see LSI
change @DSPLY so that a NULL will terminate
the string. One reason is that historically,
only two values have terminated the string: CR
and ETX. Although passing a NULL actually does
something on the Model 4 implementation, I
believe that that operation is machine
dependent (i.e. a Model 4 "feature" and not
part of the DOS per se). Another reason is
that any change such as that would require
additional memory for its implementation and
thus would be out of the question. Personally,
I don't think that @DSPLY should ignore the
next character in the string after a NULL. I
also don't think anyone is taking advantage of
the lower 31 characters (32 on a Model 4P
since a NULL-NULL will print a character as
there is a character in the 00 position of a
4P's character generator) for display purposes
through @dsply. Maybe through @DSP, though. So
who is supposed to document it, Tandy or LSI?

(Fm: Bryan Headley) Tandy did document it, in
the Tech Manual. Over in the appendices which
deal with the character set, it addresses the
business about character 0. Machine
dependency. (Although I still laugh at the
circumstance that brought the question to the
head)

(Fm: LOOS Support jjkd) In my opinion, the
only problem is that SET accepts a single
character devicespec. If you fix that, the
fact that DEVICE hoses up on a single
character spec may or may not be considered
necessary to fix, because you'll plug the only
documented hole that could result in a single
character devicespec. Of course, a program
that mucks with the device table directly

LS-DOS Information - 41 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Could still insert one, but then it's their be used as the system drive. Typically you'll
fault. want to set up the hard drive "bent" slightly

so that it comes out straight after doing this
I'm not suggesting a change, that could command.
certainly barf up something that's already out
there. My suggestion is that if indeed the As an example, [here's a drive setup] before:
@DSPLY routine has changed to terminate on a
zero, as somebody mentioned they observed it
to, that it should either be fixed or the
documentation changed to reflect the new
behavior. (yes, I did actually put au in
there, but saw it and deleted it before
sending <<grin>>)

Assuming that the doc is changed because this
is an "official" alteration from the spec, LSI
should do the documenting.

(Fm: MISOSYS) To my knowledge, @DSPLY has not
been changed to terminate on NULL. It's not in
THE SOURCE, and LSI stated that low core was
not touched.

(Fm: MISOSYS) Folks, I just passed along to
Bill today (29-May-87) a little patch which
would correct the DEVICE command of 6.3 (if
"correct" is the proper word). What it does is
to transfer only the first character of the
device name if the second character is NULL.
Here it is:

DlF,D4=ED AO 7E B7 CS
FlF,D4~7E 12 13 2C 7E

The patch, of course, is to SYS6/SYS.LSIDOS.
That's really the only place that should have
any problem with one-character device names -
if you really think that it is a problem.
Also, @DSPLY has not been changed, it does not
terminate on a NULL. I believe what happened
to the "strange display" from the nulled 2nd
character was that the 1-char device name was
the last thing on the line. The following CR
was then picked up by the @DSP driver to
designate as displaying rather than as
control.

Hard Drive Problems

(Fm: LOOS Support jjkd)
you currently have the
zero in as logical drive
two methods of getting
elsewhere.

Let me mention that if
physical floppy drive
zero, there are only
the floppy addressed

First off, if you have the system files
installed on some logical partition of the
[hard] drive, you can use SYSTEM (SYSTEM=n),
where n is the number of the logical drive to

Logical Physical
0 Floppy zero
1 HD partition two
2 HD partition three
3 HD partition four
4 HD partition five
5 HD partition six
6 HD partition one

with system files on the
After a SYSTEM (SYSTEM=6)

HD

Logical Physical
0 HD partition one
1 HD partition two
2 HD partition three
3 HD partition four
4 HD partition five
5 HD partition six
6 floppy zero

partition one.

To bring in logical drive seven as your second
floppy, you can then execute a

SYSTEM (DRIVE=7, DRIVER="FLOPPY", DISABLE)

and answer the (1-4) prompt with "2". Finally,
a

SYSGEN (D=6)

will get you a boot disk that will produce
this configuration, given a bootable system
disk in the first floppy drive.

Keyboard Filters

(Fm: Bob Haynes) I feel very foolish bringing
this up, as I bet I'm overlooking something
stupid! Nevertheless, here goes:

I'm experimenting with a small piece of code
which will eventually be used to filter *KI
under 6.2/6.3. Init code/memory header are
properly established. I'm trying to intercept
keyboard chars under certain conditions and
pass them to the *CL device as well as back
through the *KI chain. Here's the code:

SVC MACRO
LD
RST
ENDM

1faNUM
A,1faNUM
40

LS-DOS Information - 42 - LS-DOS Information

Volume I. iv Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987
/-------.:_~

; preserve DCB link if present
START PUSH IX
; get DCB pointer (from header)
RX LD IX,(IDDDCB)

(< __ :.J : fup a relocation routine for the hard
/ .:::, :::_, /addresses, Then I THINK I'm done! ('cept for
/ fd~~ J5 5 / the debugging, of course •• :) • Would appreciate
/ """'~ 1,i / any further comments you might have.

call the *KI driver
SVC @CHNIO

restore link
POP IX

I C""'"i'-0< 1

/ r:t:
1

;~ t;'
I ;; .-~~~ t_) ,
t ~ ,..:§ --."T" :
L '1.-

._____ ____ " exit if no char
RET NZ

(abbrev'd for benefit of this mssg)
PUSH HL,DE,BC,AF,AF

get *CL DCB into DE
LD DE, 'LC'
SVC @GTDCB
EX DE,HL

get char into C; send to *CL
POP AF
LD C,A
SVC @PUT

restore regs (again abbrev'd)
POP AF,BC,DE,HL
RET

Of course there's no error trapping yet, and
the @GTDCB isn't needed for every loop thru
the chain, but as I say, this IS skeleton. It
works for all chars except <ENTER> and
<BREAK>. When either of those are pressed, it
crashes. I suspect the KFLAG$ scanner, but I'm
not familiar with what is involved at the Task
level, Thought KFLAG$ scanner would be
transparent here, since all it does is update
the KFLAG$ bits, which I don't care about,
since there's no need to sense and act on
BREAK/ENTER other than to pass the char's
value via @PUT. Any suggestions?

(Fm: MISOSYS) Since @GTDCB does disk I/O (may
need a system overlay), it would be better to
isolate that into the installation code to
extract the address of the *CL DCB, then stuff
the address into your resident filter code,
That just makes good programming sense.

(Fm: Bob Haynes) My concern is when the *KI
filter remains relatively static and resident
in configuration, but the *CL chain is more
dynamic (filtering, etc). If filtering or
redirection was applied to *CL AFTER my filter
was applied to *KI, I believe the *KI filter
would access the wrong *CL vector with your
suggestion.

What I've done is set up the code to trap
certain command characters, and if appro
priate, perform a @GTDCB, then pull SYSl back
in via your technique outlined on pg 181 of
your Programmer's Guide, 'Tis almost finished,
just need to adjust a few error traps and set

(Fm: MISOSYS) Absolutely wrong. I said use
@GTDCB to get the address of the *CL device
control block. Once *CL is installed into the
device table, it's DCB address never gets
changed. You used the @GTDCB in your filter
code after it was installed, That's wrong. Use
the @GTDCB SVC in your installation code and
plug the address returned by it into your
resident filter code as if that address was
just returned by @GTDCB.

(Fm: LOOS Support jjkd) You've got it, and I
think that you have the fix too, no? Your code
can check the currently resident system
overlay. Any device I/O that causes a resident
SYSl to be overwritten by anything else is
responsible for reloading SYSl before
releasing control. That basically means any
file I/O, open or close, along with @GTMOD,
@GTDCB, @CHKDSK, @RAMDIR and so on.

Note that this applies to resident drivers and
filters, anything resident hooked into
keyboard byte I/O. And finally, even though
not related to this problem, I'd like to
mention that RTC tasks can't do any disk I/O
(but can hook through @KITSK).

(Fm: Les Mikesell) If you want to output to
the unfiltered com/dvr, you could use @gtmod
to find $CL. It t~kes a little more set-up to
call the driver directly instead of using
@put, but it would certainly be more
efficient.

(Fm: Bob Haynes) And now here I stand, my hat
in my hand, Eating some humble pie ••• Your
system well planned, the DOS support grand,
How silly I feel, said I!

Re your comments on needing @GTDCB withing a
filter module, you are, of course, correct (as
usual)! I was confusing the vector's VALUE
with its ADDRESS, The @GTDCB call is now
dutifully installed within the init code where
it belongs. Thanks, Roy, appreciate your
patience •••

(Fm: MISOSYS) That's what we're here for.

LS-DOS Information - 43 - LS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

The LSI LS-DOS Column
Hello again from LSI. Again in this column I
would like to point out that any material
contained herein is the opinion of LSI and NOT
that of MISOSYS. Any comments regarding the
content of this column should be directed to
LSI at PO Box 55235, Grand Junction Co, 81505
(303) 243-7070.

This time, I want to stress the importance of
sending in your registration cards, Response
has been fair, but note that we will have to
be very strict in applying the rules in the
future; UNREGISTERED USERS WILL RECEIVE NO
SUPPORT. Tandy will probably have mailed out
update notices to registered TRSDOS 6.2 owners
by now and all of those users, that don't read
80-Micro or TMQ, or check into the LOOS forum
on Compuserve, will finally be finding out
about LS-DOS 6.3. We expect to be rather busy
here at LSI, filling those orders. The demands
on the customer service department will
probably go up accordingly. To assure that the
Customer Service departments time is spent on
the right people, we will have to verify that
we have received your registration card, All
registration cards are entered into our
database computer on the day received and are
available in just a few seconds since they are
indexed by the Customer Service ID#. If you
have that number ready when you call the
customer service department, we can deal with
your problem quickly, with no wasted time.

Some people are having difficulty finding
their Customer Service ID#. Actually, it is
quite simple, but the instructions just don't
get the message across to everyone. Just type
in ID <ENTER) from the LS-DOS Ready prompt. I
am amazed at the number of people that send in
the registration card with the serial number
instead of the Customer Service ID#. They are
very different and serve different purposes,
The Customer Service ID# is a must on ALL
communications with the LSI customer service

-department. Now, with 20/20 hindsight, I wish
we had used "CS" instead of "ID" for the
command to get the Customer Service ID#. That
may have prevented some of the confusion.

While 1 am covering some of the basics, let me
answer one m~re common question. Why is the
TRSDOS62 or "DISK NAME" that appears after the
drive designator in a directory listing, of so
many disks, not changed in the LS-DOS 6.3
update process? That field is, of course, a
user maintained and created field. It can be
changed to whatever you want with the ATTRIB
command and should not be tampered with by an
update utility.

An interesting tidbit about Basic has been
brought up by Hardin Brothers (author for 80
Micro). It turns out that there is a
restriction on the name of the array that you
use to pass the parameters to the SVC when
using the USRll access feature in BASIC on
6.3. The name of the array can not be more
that two characters long. There isn't much
need for a longer name for this purpose
anyway, so it is no big deal (unless you have
spent all day trying to make a longer name
work). It is all a consequence of the way
VARPTR works. Remember that the syntax is
USRll(VARPTR(ARRAY(O))). Well, VARPTR returns
the address of the beginning of the data not
the beginning of the header and the length of
the header depends on the length of the name
and the number of dimensions, and the
dimensions and the data type. The problem is
that the fields in the header that give the
information needed to calculate how long the
header is are at the OTHER end of the header,
USRll does (as it should) check that the type
of the array is integer, but to know where the
type information is, it has to assume that the
array name is less than three characters long
and that the number of dimensions is one, It
is just too cumbersome to do the checking any
other way. The other choice would be to do no
checking at all. I do have a patch that
disables the checking for those of you that
think a longer array name is worth the effort.
Write to the Customer Service department if
you want it.

There have been several requests for LSI to
support 720K 3. 5" disks on the Model 4.
Because of several hardware differences, it
would require that a completely new driver be
written to support these drives. LSI does not
have any plans to write a driver for 3.5"
drives. It is hard to see much chance to break
even, let alone make a profit, on that
project. But if anyone out there tackles the
project, we wish you luck. The physical
configuration for 3.5" drives doesn't seem to
be "standardized" yet, a driver that might
work well for one manufacturer's drive may not
work at all on another drive. Just going to
720K probably doesn't justify the expense of
new drives, but if they start getting 4 or 5
meg on each disk, reliably and inexpensively,
then they will have something.

HYPERSOFT'S announced new Model 4 emulator,
PC-Four, for PC-compatible machines is
intriguing. At the time of writing this, I
haven't seen or heard anything about it except

The LSI LS-DOS Column - 44 - The LSI LS-DOS Column

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

the ad in July 80-MICRO. LSI considered doing
something like it, but never thought a
software only approach would work very well,
The 8088 just isn't faster than a Z80 such
that it could emulate a Z80 and take care of
the MS-DOS environment without a significant
loss of speed. There seems to be some demand
for something like this, and LSI is not going
to fulfill it, so we are glad to see that
HYPERSOFT has moved into this area. I will
look into this product and discuss it at
length in my next column.

Where do we go from here? LSI has had frequent
requests to make a good DOS for PC hardware.
The trouble with that is the limitations of
the PC hardware, which is already approaching
its own obsolescence and a need to be MSDOS
compatible which would defeat the whole
purpose. The PC came out BEFORE the Model 4,
remember? The trick is to write a really good
DOS for the machine that hasn't been built
yet, Although a better DOS could easily be
done for the IBM world, (for One or Two
Million dollars), we don't feel that it would
be economically feasible. So for now, we wait.
Now where did I put that crystal ball? •••

I am working on a major new project; it is for
the IBM world of users though, and it is only
for users who invest in mutual funds, The
design is almost complete now and I have
started the coding. It should be ready in a
year or so. If any of you are involved with
mutual funds and would be interested in a
system that completely handles and monitors
your holdings drop me a letter or give me a
call I'll tell you all about it,

We knew it would happen! There are some
patches out there on some BBS that claim to be
able to fix the date handling in TRSDOS 6.2. A
word of caution: If it could be fixed
adequately with patches, we would have done it
that way, The patches that we have seen just
alter the base date from 1980 and deal with
only about half of the other things that need
to be done to keep all of the operating system
working correctly. And the range of dates
remains only 8 years. For example, to get
1988, you lose 1980. Please don't get involved

LSI patches to LS-DOS 6.3

with this mess if you don't have to.

There was an error in the patches in our last
column. Don't panic! I think everyone just
fixed it on the fly without giving it a second
thought. What we did was to give the same name
to two of the patch files. Both patch #002 and
#009 were given DCOPYl/FIX and #009 should
have been DCOPY2/FIX, as it was referenced in
MAKE63I/JCL. Sorry about the oversight. If you
didn't notice it at the time, you should go
back and verify that patches #002 and #009 are
both installed.

There are four new patches. All are very minor
but a new level has been assigned to keep
things orderly, The fifth patch is just to
change the level designator in the boot
banner. Remember that different level letters
are assigned according to whether you put in
the patches yourself or LSI does it by
recutting your master. All of these patches
are very short and could easily be done from
the command line, but they are presented here
in JCL format for the benefit of Disk Notes
and this same file will be put into Data
Library O (and/or DL6) of the LOOS forum on
CompuServe.

Make that five new patches plus the level
change. Roy just called with a bug that he
just found (and he fixed). Under some very
unusual circumstances, DIR refuses to read in
an extended directory record because it thinks
it already has it when it doesn't,

To install the patches included here you must
first create each PATCH file exactly as shown
as an ASCII file. Then save it with the patch
name specified in the patch. Each physical
line shown must be terminated with a <ENTER>.
Each individual patch has been separated by a
line of = signs. The / JCL file that follows
will properly install all these patches. After
all files have been created do a: DO MAKE63K
(D=d,S=s) <ENTER> where the "s" in the example
is replaced by the Source (where the /FIX
files are) and "d II is rep laced by the
Destination (where a COPY of your Master 6.3
disk is).

<'" ~

:::_ !
t ,··, !

=== -~: ; ~ '.

•*** MAKE63K/JCL ***
.-JCL- Procedure to create a LS-DOS 6.3.0 Level - "K" from a level "I" or "J"

NOTE: there are two version of BOOT3/FIX. Use the correct one for the
level that you have.
NOTE: Destination to be patched and Source of patch file must be given on
JCL command line, ie - DO MAKE63K/JCL (D=d,S=d) <ENTER>
Replace the "d" in example with correct drive numbers

r,1 -. ,
-< (J~ t
.:, z :

~ ·.~~ 1 ~

·' ':) ' '
)_ ; ~

o:
j ; I

~ - _ _,__ _______ _____ }'

The LSI LS-DOS Column - 45 - The LSI LS-DOS Column

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987

PATCH SYSO/SYS.LSIDOS:#D# using SYSOl/FIX:#S#
PATCH TED/CMD,UTILITY:#D# using TED3/FIX:#S#
PATCH SYS6/SYS.LSIDOS:#D# using DEVICEl/FIX:#S#
PATCH DISKCOPY/CMD.UTILITY:#D# using DCOPY3/FIX:#S#
PATCH BOOT/SYS,LSIDOS:#D# using BOOT3/FIX:#S#
PATCH SYS6/SYS.LSIDOS:#D# using DIRl/FIX:#S#

**
**** Your LS-DOS is now a version 6.3.0 / Level - K ****
**

,END

Here are the current patches that are applied by the above JCL.
==-===============-==
• ** SYSOl/FIX - 02/20/87 - For Level J - SYSO/SYS.LSIDOS - - - - PATCH #011
• This patch will cause the day of week byte at DATE$+4 to be set
• to O during the load of SYSO, correcting the state of the LEAP BIT •
• This patch to be applied to SYSO/SYS.LSIDOS - File dated before 07/01/87
X'0036'=00
==================-==
• ** TED3/FIX - 05/22/87 - For Level J - TED/CMD.UTILITY - - - - PATCH #012
• This patch corrects a problem that occurred when another file is loaded
• immediately after deleting one character with <CTL> D •
• This patch to be applied to TED/CMD.UTILITY - File dated before 07/01/87
D04,Bl=AC;F04,B1=8A
===
• ** DEVICEl/FIX - 05/29/87 - For Level J - SYS6/SYS.LSIDOS - - PATCH #013
• This patch enables DEVICE to function correctly when fed a one character
• device name, which is forbidden in the manual but not actually prevented
• by the operating system •
• This patch to be applied to SYS6/SYS.LSIDOS - File dated before 07/01/87
D1F,D4=ED AO 7E B7 C8;F1F,D4=7E 12 13 2C 7E
===
,** DCOPY3/FIX - 06/05/87 For Level J - DISKCOPY/CMD,UTILITY - PATCH #014
• This patch will correct DISKCOPY to properly deal with software
• write protected source drives •
• This patch to be applied to DISKCOPY/CMD.UTILITY - File dated before 07/01/87
D03,A8=78;F03,A8=F8
===
,** BOOT3/FIX - 06/09/87 - For Level I - BOOT/SYS,LSIDOS - - - - PATCH #015
• This patch will cause the display LEVEL of 6.3.0 to change from "I" to "K"
• This patch to be applied to BOOT/SYS.LSIDOS - File dated 12/01/86,
D02,1E=4B;F02,1E=49
===
,** BOOT3/FIX - 06/09/87 - For Level J - BOOT/SYS,LSIDOS - - - - PATCH #015
• This patch will cause the display LEVEL of 6.3.0 to change from "J" to "K"
• This patch to be applied to BOOT/SYS.LSIDOS - File dated 12/01/86.
D02,1E=4B;F02,1E=4A
==--===========
,** DIRl/FIX - 07/01/87 - For Level J - SYS6/SYS.LSIDOS - - - - PATCH #016
• This patch will correct the handling of a very rare exception by DIR •
• This patch to be applied to SYS6/SYS,LSIDOS - file dated 02/10/87.
D09,C9=FF;F09,C9=00
===-====-======

Volume I. iv

The LSI LS-DOS Column - 46 - The LSI LS-DOS Column

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

MS-DOS Information
Tandy 2000 - general

(Fm: Steve Jensen) I have recently acquired a
Tandy 2000 with 256K. My experience is with
IBM PC's and my software is all in that
format. My questions -- Can I run any of it- on
the 2000? How can I expand the RAM without
paying a fortune? Are there third-party hard
drives that are not similarly prohibitively
expensive? I appreciate any information you
can give me about the 2000.

(Fm: LDOS Support jjkd) Well-behaved IBM
applications will run fine on the T2K. This
means screen output via DOS or BIOS, not
directly to the hardware. Any other "fancy"
program that uses anything other than BIOS and
DOS resources is going to be a problem.
WordPerfect works fine, for example, but the
IBM version of MS-Word wouldn't have a chance.

Extra memory from Tandy is not bad at all,
around $170 for the board. You can save 20% by
going mail order. That comes with 128K of
chips, you can add two IBM PC 64K sets to
bring you to 512K. The board can be modified
to use 256K chips, giving you 768K. A
commercial board for 896K total is available,
but expensive at around $500. The same vendor
also has a 20 meg HD kit for a bit less than
Tandy's 10 meg unit.

(Fm: Steve Jensen) Thank you for the quick
response. It is good to know that IBM software
will run on the 2000, but is there not a read
problem the disk drives - I understand they
format differently. Also, who is the
commercial vendor you mentioned? Is it
possible to modify the board to accept 256k
chips as a non-tech or must this be done by a
computer technician? Thanks again for the
information.

(Fm: LOOS Support) No, be very careful! The
opposite is true, the majority of IBM programs
will not run, due to the use of direct video
access and/or hardware access, Virtually
anything that "pops up", for example, is
immediately ruled out, WordPerfect is one of
the lucky exceptions.

The T2K will read and write either 360K or
720K floppies, though some care needs to be
taken when writing 360K disks.

The vendor I'm thinking of is Envision
Designs, you can find references to them over
in the TRS-80 Pro Forum, go PCS21, in either
DL 9 or DL 10, I forget which. They also used
to advertise in 80micro, I haven't looked
recently.

Most of the boards I've heard modified by non
techs have been problems, it isn't something
I'd recommend to somebody who isn't at least
reasonably familiar with digital logic, anti
static techniques and soldering on multi-layer
boards.

(Fm: MISOSYS)There is a newsletter called
Tandy 2000 Orphans which may be of assistance,
The address is 387 Main St., Westport CT
06880. "Envision Design" mentioned by Joe is
at 1539 West Pearl St., Pasco WA 99301 [509-
54 7-1139].

Clear to end of frame

(Fm: Nate Salsbury) Does anyone know a command
in GW BASIC that will partially clear the
screen from the present cursor position to the
E0S (lower RH corner,)

In M4 BAS IC, the command "PRINT CHR$ (31);"
would clear from where the cursor was at that
moment to the E0S. In GW BASIC I find PRINT
CHR$ (12) which clears th.e WHOLE screen - same
as CLS. Not what I want;

(Fm: LOOS Support jjkd) I don't think there is
one. A kludge would be:

1000 print string$(80-P0S(0),32);

but that type of thing can give you troubles
with wrapping the right margin and scrolling
the screen unless you always stop one short,
which can in turn cause problems with not
clearing the last column. I think that you'd
get an error back from the string$ function if
the cursor happened to be in the last column.

If you were not working in BASIC, I'd say use
ANSI.SYS, but BASIC ignores the ANSI.SYS
driver.

(Fm: JIM OWENS) Joe, What do you mean? I only
have a vague understanding of what the ansi
driver does. In fact I know only two things
about it, (1) Some programs need it; and (2)
it slows down execution if it is not needed, · ·

MS-DOS Information - 47 - MS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

So Basic does not
Joe don't you see
opened up a whole
to ask! (grin)

use it any way? Well darn it
what you've done? You have

new set of questions for me

(Fm: LDOS Support jjkd) The ANSI driver is an
at tempt to provide a "Standard" interface for
programs to use. This is the equivalent of
using the SVCs and the *DO device in the Model
4 environment. Unfortunately, Microsoft is
their own worst enemy, and they generally
refuse to follow their own guidelines when
producing their products. The result?
Virtually all MS-DOS BASICs ignore ANSI.SYS
and go directly to the display hardware.

(Fm: Les Mikesell) Did you try using ANSI.SYS,
then opening CON: and printing the control
sequences to it? (Just a thought, I haven't
tried that either ••). If it does work, BASIC
will probably then forget the current cursor
location.

(Fm: Nate Salsbury) I solved MY problem about
clearing to the end of screen with a ML
program which I can merge into any GWBASIC
program. I just put the details into DL O with
the name KLEER.ASM. Perchance, it might be of
use to you with slight modification. I found
that printing a string of blanks was fast
enough for my purposes (to just clear one
line).

LOOS/MSDOS Utility

(Fm: Ed Boudrie) Is it possible to transfer
files from LOOS 5.1.4 into a MS-DOS system? I
keep a large mailing list on Profile III+ HD
(over 4000 names) and would somehow like to
install that data into a MSDOS database. Any
suggestions?

(Fm: LOOS Support jjkd) Yes Ed, as a matter of
fact there are numerous methods. The problem
breaks down into two stages: (1) Physically
transferring the data from one machine to the
other, and (2) Altering the data format so
that it is useable by software availalble on
the new machine.

The first is easily handled in one of two
ways. The data may be moved to a disk readable
by the new machine, or it may be transferred
over an RS232 link. The disk method is limited
by the fact that (a) special software will

need to be purchased, and {b) you can only
transfer a diskfull at a time.

If your database is on a hard disk, you will
have to break it into chunks, move each chunk
over and then re-assemble the chunks on the
hard disk at the other end.

The RS232 method can generally be accomplished
using public domain software at both ends, so
no special software need be purchased. Also,
the entire file can be transferred from hard
disk to hard disk, no segmentation required.
The disadvantage is that you have to have both
machines in one place at one time. Modeming
probably isn't practical, and you can't trade
in the old machine on the new machine.

Massaging the data to fit into the new program
is another matter entirely. You need to decide
what database you are going to use on the
destination machine first, then we can examine
the options in more detail.

Editor kudos

(Fm: Marc Nowell to H. Brothers) You speak of
a new "configurable" editor. I'm using BRIEF
now and am blown away by it! I set mine to a
WEIRD mix of commands from the Norton
Editor, WordStar, SideKick, and about 30%
homebrew! What do you use?

(Fm: H. Brothers) I'm
programming, and something
word processing on the
(LeScript on the Model 4).
isn't it?

PC DOS vs MS-DOS

using BRIEF for
called EDIX for

MS-DOS machine
BRIEF is great!,

(Fm: Adam Rubin) Probable dumb question here,
but that's never stopped me yet: What does it
mean when a program works under PC DOS, but
won't run properly under MS-DOS? Did someone
use something undocumented somewhere? Have
official MS-DOS guidelines been ignored7 How
frequently does something like this show up in
commercial programs? (The program in question
is "Webster's New World Writer", and was tried
under both DOSes on an XT clone.) Many thanks
for any enlightening comments!

(Fm: LDOS Support jjkd) Several possibilities:

MS-DOS Information - 48 - MS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

1) The program relies on undocumented
internals of the OS. This will usually tie a
program to a particular release of DOS, or at
least those that it "knows" about, in addition
to eliminating MS-DOS compatibility. I
wouldn't expect a program like that to work
under, say, the just released DOS 3.3, for
example. There is generally no excuse for
this. In many cases it is caused by the copy
protection scheme, if any. I wouldn't keep
such a program, as I wouldn't trust it to keep
on working for any length of time. It would be
returned immediately.

2) What you have is a barfy, botched-up
version of MS-DOS. When Microsoft licenses a
version of MS-DOS to a vendor, the vendor is
responsible for final assembly of the OS,
along with mastering and duplication. The
vendor is also usually responsible for writing
or at least assembling a number of the
utilities that come with. Some just never can
get it right. Who's version of MS-DOS is this?

3) Possible BIOS/Hardware incompatibilities.
Because part of DOS directly modifies the low
memory regions normally maintained, containing
and controlled by the BIOS interrupts, a not
fully 100% compatible machine BIOS could
become a problem. An example of this is
popping up with the use of some 3.5 inch drive
options on some clone PCs. They will only
format to 360K with many releases of MS-DOS,
but will usually work fine with real IBM DOS
(except for BASIC, of course). Often a BIOS
change will fix the problem.

(Fm: jeff brenton) Well, technically, since
"PC-DOS" is a trademark of Digital Research
Corp., and refers to their concurent CP/M-86
(which now supports most MS-DOS stuff from
what I hear), I would be surprised if ANYTHING
that requires "PC-DOS" would work under
generic MS-DOS! [grin]

but, seriously, MS-DOS is bigger than IBM-DOS
due to trade secret problems, plus IBM
essentially re-writes MS-DOS anyway. there ARE
differences, but anything that follows the
rules for MS-DOS programming [you know the
ones; written by Microsoft?] should run on
either.

Howsomeever, some people decide that "by the
rules" isn't good enough, and do
implementation-specific kludges that make even
switching from version 3.1 to 3.2 of IBM DOS
risky ••••

(Fm: Adam Rubin) Thanks for your reply! I'd
guess it's "3) BIOS/Hardware incompati
bilities". If it' 11 help clarify anything,
here's some specifics on everything. (It's
actually my father's system; I'm just
visiting.)

This is an Epson Equity II (PC XT clone), with
a V30@ 4.77/7.16 MHz, 640K RAM, and 2 360K
floppy drives. MS-DOS 3.10 was included with
it. The program in question is ''Webster's New
World Writer", vl.01, which appears to have
been compiled with Lattice C v2.l. It's not
copy-protected.

The one problem I've noticed when running
Webster's under the Epson MS-DOS 3.11 occurs
when the program checks to see if a disk has
been inserted, e.g. right after "Insert
Spelling Checker in A: and press ENTER." The
result is an apparently endless sequence of
"Drive not ready -- Abort, Retry, Ignore"
messages. When it doesn't check for a disk,
e.g. Save Document, there's no problem.

I tried the program under PC DOS 2.00, 2.10,
and 3.10, and that problem doesn't occur. In
fact, my father called the customer support
number, and was told that the program is
supported under PC DOS only, not MS-DOS. (That
sound as weird as I think it does?)

Does all that explain anything? My knowledge
of MS-DOS is admittedly pretty near zero, at
least compared to the level of knowledge in
this forum.

Well, the manual says, "Webster's runs with PC
DOS, versions 2. 0 and above," though "PC DOS"
isn't mentioned in the trademark
acknowledgements. Yep, I've run into the rules
for MS-DOS programming; I saw the 1000+ page
book Microsoft finally published last sunnner.
Anyway, thanks for your comments! A few of the
gory technical details are in my previous
message to jjkd, if you're interested (and
masochistic?).

HELP with EXE files

(Fm: Nate Salsbury) I am in serious need of
help. I'm doing things in MS-DOS (using MA.SM
and LINK) that I don't understand.
Consequently, when the results are not as
expected, I have no idea of how/where to fix
things. I'm not trying to shirk my
responsibility to "read the manual. •• " I have
read it MANY times plus several "explanatory"
books and I am still completely in the dark.

MS-DOS Information - 49 - MS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

1. In MISOSYS' TMQ, Roy says: 11 No MSDOS file
has absolute loading instructions, A '.COM'
file loads relative to the next paragraph. An
',EXE' file has a header record listing a
chain of file locations needing segment
fixup,"

This reads to me like a description of what I
know as a "relocatable" program in the Z80
world, i.e. it will work/run/play ANYPLACE in
memory.

My exquisitely BADLY written DOS manual says
this:"• •• the output file from MS-LINK (run or
.EXE) is not bound to specific memory
addresses; therefore it can be loaded and
executed at ANY CONVENIENT ADDRESS (my
emphasis) by the operating system."

I therefore have the idea that an .EXE file
can (and will) be loaded into ANY place in
memory by DOS (HOW does it decide WHERE to
load?) and that DOS "fixes II the necessary
addresses so it will play 'where it is'. Is
that the correct view?

2. If I use MASM and LINK on my XT CLone to
produce an .EXE file (a simple file with only
DOS commands and proper interrupts - NO direct
hardware access) shouldn't it be executable on
a Tandy 1000 HD "as is"? If not, WHY not?

3. I wrote a very short 8088 ASM program which
was eventually to be merged into a BASIC
program. Following procedures outlined in
"Assembly Language Primer for the IBM XT &
PC", I used MASM (no problem) followed by the
use of LINK with its "HIGH" switch, e.g. LINK
file/HIGH. The accompanying text: "Until now,
LINK created .EXE files AT THE LOWEST
AVAILABLE MEMORY ADDRESS (ed. ?????). This
will now be occupied by BASIC."

"Fortunately,... /HIGH option will cause an
.EXE file to be installed in High memory,
directly below the transient part of DOS." My
VERY poorly written DOS manual confirms this:
•~se of the /HIGH switch causes MS-LINK to
place the run file as high as possible in
memory. Otherwise MS-LINK places the run file
as low as possible". Now how does THAT fit in
with the idea that an .EXE file is NOT tied to
any part of memory? What does that mean: " ••••
installed in LOW memory". These are all real,
English words but they DON'T MEAN ANYTHING to
me because they seem SO contradictory. In one
place I'm told that .EXE files can load
ANYPLACE in memory •••• here I'm told that that
LINK is selecting a SPECIAL part of memory
(with the /HIGH switch.)

4. So, now I have my .EXE file composed with
the /HIGH switch of LINK. Using DEBUG, I load
it into memory and find that the DOS has
assigned it to Code Segment (CS register)
9F94H. I am supposed to use THAT address to
merge this file into a BASIC program with THAT
address being set by using a BASIC statement
to DEF SEG = &H9F94. I do all that is outlined
and it works just fine.

HOWEVER, when I move the program and .BIN file
that I created on my 640K XT over to a 256K
Tandy 1000 HD, the thing bombs, After some
experimentation, I discover that when I load
my .EXE file (created on my XT) using DEBUG on
the Tandy 1000, it NOW loads at CS= 3BEOH
(!?????) so I have to REWRITE my BASIC program
(and recreate the .BIN file needed) using THIS
address. This means that my BASIC program is
NOT PORTABLE TO OTHER GW BASIC MACHINES
because the EXE file used with it loads at
9F94H on MY machine, 3BEOH on ONE Tandy
machine and WHO knows where on any other MS
DOS computer. Is this progress?

Is there ANY way to use MASM and LINK to
create an .EXE file that will ALWAYS load into
some predetermined address? Even .COM files
with an "ORG lOOH" will still be actually
loaded into various ACTUAL addresses when
called in by DOS. Or, asking the question
differently, is there a way to 'fool' DOS into
thinking that MY machine has only 256K of RAM
so that what I do HERE would work on my
customer's 256K machine also?

I'm probably asking for too much information
via CIS. I would be happy to just get back
some recommended reading that would explain
the REALITY of what is going on, the structure
of the files being created, why they act the
way they do (this stuff MUST make sense to
Lotus!!) and how to take real CONTROL of the
processes that create and use these files. The
manual that came with my XT (prepared by
Compaq) is absolutely devoid of ANY
information along these lines. e.g. There is a
program called EXE2BIN which "Changes an .EXE
file to a • COM file." Well, that is TRUE but,
to me, no help. WHY does one do that, HOW do
you tell if you CAN do it to any specific EXE
file, WHAT changes are made to the file
itself? These are just a couple of completely
unmentioned, unexplained items, I would like
to be able to read something that described
the entire system and the rationale behind it.

Thanks for reading this far. If you can shed
some light in these murky quarters, I cannot
think of adequate words to thank you further.

MS-DOS Information - 50 - MS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

language program
no interface to

(Fm: Jim Beard) Welcome to the wonderful world
of MS-DOS. The 8086 uses a "segmented
architecture" which means that it is basically
a 64K chip with schizophrenia. The .COM files
are CP/M-86 compatible files which load at
100H in the lowest available segment. '.EXE'
files are relocatable, and I haven't been able
to get full documentation on them myself yet.
Roy tells me that there is an old article in
PC-WORLD on ',REL' and '.EXE' files, but I
haven't looked it up. Apparently, headers on
.EXE files can give a preference for location,
but I am very hazy on that. Good luck.
[Editor's note: the article referred to was in
PC TECH JOURNAL, October 1985, Vol 3, no. 10,
and it referred to the structure of '.OBJ'
files. The Microsoft standard is a subset of
the Intel standard which is documented in,
"8086 Relocatable Object Module Formats, An
Intel Technical Specification"].

(Fm: H. Brothers) Nate, Answers to your first
two questions: (1) Yes. DOS decides where to
load the next program by using the first free
paragraph given up by the parent process
(normally Command.Com). That is, a program
will load at the lowest free address in
memory, in the normal run of events. (2) Yes.
As long as you aren't trying to use DOS 3.x
calls on a DOS 2.x system, your program should
be directly portable.

2) For.a standalone machine
that uses only interrupts,
BASIC, true.

3) The /HIGH option places a flag into the
header code so that the system .EXE file
loader will shove it up to the top when
loading. Your DOS tech ref manual (if IBM's)
documents the structure of the header for an
.EXE file, not that you really need to know it
for this.

4) Sure. The more memory you have, the higher
the top of high memory is, right? Remember the
32K Model 3 vs. the 48K Model 3?

Forcing your code to load
address is even more foolhardy
in the LDOS/TRSDOS 6 Z80 world.

at a specified
than doing so

The correct way to do this is documented in
Appendix B of the IBM BASIC Manual for version
3. Do you have access to this, or do you want
more details?

You really need "real" documentation. Get the
BASIC manual mentioned in my previous reply.
Then get every book written by Peter Norton.
There are better references (Peter has a few
minor errors, and tends to use decimal when he
should use hex) but few better tutorials.

You can graduate from there to "Advanced MS
DOS" by Ray Duncan and ''MS-DOS Developer's

(Fm: LOOS Support jjkd) 1) Part one - True. guide" by Angelmeyer (sp?) and somebody else.
Part two - Not True. Both are great references and sources of code

ideas (but little or nothing on BASIC).
Yes, a .COM program will end up running
anywhere in memory. This is not relocatable
code, however. The segmentation structure of
the Intel processors uses the CS (code
segment) to make the program "think" it knows
where it is executing from beforehand, Only
the segment registers ever need to be changed.

An ,EXE file is more like dynamically
relocating a driver or filter under LOOS. A
table of things that need to be fixed or
relocated is maintained, and then once you
know where the code is going to go, you can
re-align the stuff in memory.

The quote you mention is not strictly true,
the segments contained in the program must be
aligned to some degree. For executable code,
that is typically a paragraph (every sixteen
bytes) boundary. That's because the segment
registers can't be adjusted any closer that
that.

I find it fascinating that Intel and the IBM
8086/8088 line are based entirely upon an
architecture that most sophisticated
programmers and hardware hackers would have
considered a "clever kludge" at best. Of
course, the 80286 and up do have linear
address models, unfortunately it is far too
late for that to do much good.

(Fm: Jim Beard) What do you mean, clever! It's
just a kludge. The extended addresses of the
80286/80386 are in new instructions;
portability with the 8088/8086/80186 machines
demands that these instructions be avoided.
Microsoft FORTRAN 77 V, 4.0 and probably other
languages have compiler options for use of
186/286/386 instructions, but I doubt that
these options have much effect except to
prevent portability. I'll find out soon enough
& say, as I run RATFOR/FORTRAN 77 V 4.0 on an
AT at work. With the same 8087 programs, it is
a dead heat with my Tandy 1000A with 8087,

MS-DOS Information - 51 - MS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

though. I would have to compare programs on
the same machine with and without the 286
instructions.

(Fm: Nate Salsbury) One of my problems seems
to be with the word "relocatable". Both .COM
files and .EXE files can be loaded into ANY
segment. To me, that is the meaning of
'relocatable'. The fact that ,COM files always
start at 100H of the segment they find
themselves in... that is a minor
'distinction". I would still call both type
"re locatable".

Joe - if I write a little .COM ML program to
print the famous "hello" message, I have to
put that 'hello' into a DB place (with a
label) and then, someplace in my code I have
to "POINT" at that label, e.g. when the
program is actually running, it has to be told
AN ABSOLUTE ADDRESS· in memory where it can
find 'hello' in order to reveal it on the
monitor.

Since ,COM programs can load at ANY segment,
this means that my 'hello' text could be
(almost) ANYPLACE in memory (the 'almost' is
allowing for the constraint on 16-byte
boundaries for segments). Since the program is
finding an absolute reference SOMEPLACE INSIDE
ITSELF, my education from Z80 says that this
is what is called a RELOCATABLE program. The
fact that is must start at !OOH in its present
segment is trivial because that 'absolute'
start address can be changed in 16 byte
increments by merely changing the CS setting!

So, to me, BOTH .EXE and .COM files are
· 'relocatable'.

(Fm: jeff brenton to LOOS Support) You should
see P.J.Plauger's editorial comments on the
80x86 family in the April 1987 Computer
Language. He LIKES segmentation, but feels
that Intel's IMPLEMENTATION of segmentation on
the '86 family is botched at best, and
incredibly stupid at worst, .•

he didn't say he liked
did point out the

DESIGNED segmented

[well, to be honest,
segmentation, but he
advantages of a WELL
architecture.]

(Fm: Jim Kyle) First and foremost, keep in
mind that MS redefines the language to mean
what THEY want it to mean, just like Humpty
Dumpty did! With that settled, we can discuss
their meaning for "relocatable". In the '86

world of segmentation, an address consists of
two parts: the segment, and the offset, In any
program, the base value for segment 0 can
actually be at any of the possible segments in
the memory space (that is, every address in
which the low four bits are 0), and in this
sense you are right that both kinds of program
files are relocatable.

However, in the COM file all of the OFFSET
values within the program are fixed and cannot
be changed, and what MS means by "relocatable"
is "changeable offset values". In the EXE
structure, the OFFSET values can be (and are)
manipulated by the loader.

In more familiar terms, it's the difference
between a /CMD file that always loads at 3000h
or 5200h, and a /DVR file that must relocate
all internal references. The BIG difference
between the Z80 and the '86 worlds comes from
the segmentation, but so far as programs are
concerned this is largely invisible (being
handied by the loader) unless you have to be
concerned with multiple program segments •••

(Fm: Nate Salsbury to H. Brothers) I have
successfully merged my EXE file into my BASIC
program. The major problem, pointed out by you
and others, was that /HIGH on a 640K machine
is different from /HIGH at 256K! (Seems to me
that I should have known THAT <grin>. Perhaps
it is the BIG NUMBERS that I am not used to
yet!)

I once reported to you that I
problem with "ML in a string",
be a clerical error on my part
fine when I did it the right way.

was having a
Turned out to
- worked just

Thanks for participating in "The (electronic)
educati.on of Nate (Hyman Kaplan) Salsbury".
BTW - with all your Sysopping/writing/product
reviewing are you ALSO/STILL teaching?

(Fm: Nate Salsbury to LOOS Support) Joe -
Sorry to break the thread but I fell quite
sure that your earlier reply would have
scrolled off by now. First is a semantic
problem re: "relocatable COM files".

Acknowledging that COM files must start at an
offset of 100H in "this" code segment, it IS
true that CS can be located "anywhere" in
memory (subject to the 16-byte 'steps').
Doesn't this mean, in practice, that I can
have my COM program loaded into and run almost
ANY place in memory (at 16-byte 'start'
intervals) by suitably diddling CS? If so, to

MS-DOS Information - 52 - MS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

ME that is "relocatable code"... it will run
(almost) anywhere in REAL memory without
CHANGING THE CODE.

As I read statements from you and others, I
think you are saying that EXE files are "more"
relocatable because THEY can play at ANY
address in a segment e.g. they are not tied to
that !OOH offset. BUT, are they not "fixed on
the fly" by DOS as they are being loaded to
ADJUST addresses for where the EXE file will
be in ACTUAL memory - more or less the same
scheme used to relocate a filter just under
HIGH$ in you-know-what. Right? If so, then
they are not "relocatable" by MY definition
("Put it anywhere in memory and it will run").

Question: SUPPOSE I manage to load an EXE file
high in the current CS space and the EXE file
extends beyond the end of this CS segment. NOW
what? Does it work? Does my computer BEEP?
Does my mono screen display colors? Or, will
DOS refuse to load it this way?

Joe - I BLUSH at not realizing that a program
fixed to load near 640K would differ from one
fixed for 256k! I knew that in my Z80 32K
Model III vs the 64K Model 4! Must have been
blinded by the BIG NUMBERS (I can STILL recall
my original Model I complete with 4K and a
cassette!)

I have a lot of good reference books - both P.
Norton, AT&T's BASIC manual, getting DOS
manuals from Bob Haynes and have "Adv. MS DOS"
on order. STAND BACK ••• MORE questions are
SURE to follow! Thanks for the current info!

(Fm: LOOS Support jjkd) It's all a matter of
point of view, I guess. Both .COM and .EXE
files won't work without some form of
management by the DOS. For .COM, it is as
simple as setting all the segment registers to
0010:0000 less than the code start address.
For .EXE files, the loader has its work cut
out for it. All internal segment references
must be adjusted to account for the offset,
and the segment registers set to (probably)
various different values.

What makes both of these not "relocatable
code" in my book, is that you can't move,
let's say, half the code in a segment relative
to the first half at run-time, and have the
end result work. Of course, to have this work
even on a machine with "truly relocatable"
code, like the 68000, each piece must be self
contained and not reference the other. In an
.EXE file, they could then also be put in
different code segments.

As for loading, no,
If you load an .EXE
"this" code segment,
"own" code segment.
overlap.

it doesn't work that way.
file, it doesn't load into

it always loads into its
Those could, of course,

(Fm: Les Mikesell) Remember that in .COM
files, the segment sizes cannot exceed 64K -
that is the limit of the relocation that can
be done by setting the segment pointers at run
time.

(Fm: LOOS Support to Jim Beard) I call it a
clever kludge because it works at all in the
general case for non-trivial programs. RE the
80286/386, I was referring to protected mode
operation in regards to the linear addressing
mode, Linear addressing is not available in
real mode with or without the new
instructions. Of course, the 386 memory
management also allows you to operate in
virtual '86 mode to simulate the kludge.

(Fm: LOOS Support to Nate Salsbury) Entirely a
matter of semantics. To me, a program is
relocatable if the code is entirely based on
relative jumps, or if locations in memory are
calculated at run-time (not compile or
assemble time, of course offsets must be
cal cu lated then). "Real" 6809 and 680x0
relocatable code works this way, due to the
linear address space and the fact that almost
every instruction has a relative form. In both
.COM and .EXE files, there are absolute
offsets all over the place.

The .COM file works only because the segment
registers are set up to "magic" values that
represent the location the program segment
(only one allowed) was loaded at.

In .EXE files, since more than one segment is
allowed, any offsets requiring reference to an
absolute location are "hot patched" on the fly
when the program is loaded.

Note that according to this definition, the
Z80 code used in LDOS filters and drivers is
not "relocatable code", but instead is "code
that is relocated". A fine difference
indeed •••

(Fm: Nate Salsbury) I think the distinction
(re: LOOS filters) between "code that is
relocated" vs "relocatable code" is NOT a
'fine difference'. In fact, that is exactly

MS-DOS Information - 53 - MS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

the point I'm
understand)!!

trying to make (and distance from the start has changed, all the
code in that second half will stop working.

Is it true that a COM file will be placed into
absolute memory by the loader as a function of
what has gone on before? In other words, at
different times, a COM file might find itself
with different Code Segment (CS) i.e. be
located in some DIFFERENT PLACE in ABSOLUTE
memory. But, (here is the important thing to
me), NOTHING IN THE PROGRAM has been changed,
corrected, modified, etc. every byte of
working code is iden tica 1 to the "previous
time" it was used - EVEN IF AT A DIFFERENT
ABSOLUTE ADDRESS.

If that concept is "-1", then I would say that
a COM program is RELOCATABLE. On 'tother hand,
an EXE file would be "code that is relocated",

Do I have the right concept? I hope so; I've
got to get on with "bigger" things.

(Fm: LOOS Support jjkd) Yes and no. <<Grin>>
Under that definition of "relocatable", then
yes, .COM are and the .EXE are not. Only the
CS register need change. Assuming that's
settled, let's look at this from a slightly
different point of view.

The Z80 provides two basic kinds of jump
instructions, absolute and relative. Absolute
jumps go to a particular spot in the 64K
addressable by the Z80, The relative jumps, on
the other hand, go to a particular spot
relative to the current instruction pointer,
Thus, no matter what the "absolute" IP may be,
code written only using JR may be moved around
without concern, as long as we can get to the
entry point and back from the exit point,
Presto Changeo, we now have relocatable code.

On the 8088, (non-long) jumps are always
absolute within the current code segment, but
are treated relative to the value of CS. Thus,
if we move an entire code segment, no problem,
everything is hunky dorey. Since the CS
register has been changed, all the offsets
within the segment are still OK. One can
consider this the same as the way Z80 absolute
jumps work, the only difference being that the
64K doesn't have to start at zero in the
physical memory map, that's what the CS
segment register is for.

Now, let's move just part of the code in that
code segment, just the second half (at run
time, not at assemble-time). Since the
assembler calculated all the displacements
from the start of the code segment, and the

On the 68000 (and 6809), relative jumps can be
coded relative to the current IP, not some
other landmark. So, as long as we keep track
of the entry points and where we came from,
properly generated code can be moved willy
nilly without fixing anything on the part of
the DOS, the loader or anything else. In my
book, only that is truly relocatable code.

(Fm: H. Brothers) Joe, Now I'm confused about
your definition of "relocatable" vis a vis the
Intel architecture,

The byte format for a conditional jump and a
SHORT jump is "[opcode] [displacement]" and
the operation is "ip <- ip + displacement". In
both cases, the displacement is a signed 8-bit
quantity, just like a Z-80 JR, and is sign
extended, Isn't that relocatable by your
definition? For a NEAR jump, the byte format
is "[E9] [dispL] [dispH]" and again the
operation is "ip <- ip + disp". As far as I
can see, there's nothing in any of the jump
instructions that makes them tied to the CS.
Only indirect jumps and jumps out of the
current segment are non-relocatable.

The same is true for calls. The byte format
for a NEAR call is "[E8] [dispL] [dispH]", and
again the effect is "ip <- ip + disp ".
Indirect calls and calls out of the segment
are non-relocatable, but calls within a
segment (and that stay within the segment
after relocation) should be able to move
without problem, I think.

The instruction which the 80x86 family is
missing (and I think the 68000 has it, but
it's been a while since I looked closely at
the 68K instruction set) is a relative
indirect jump or call, which would have the
effect of "ip <- ip + REG16" or "ip <- ip +
MEM16 ". But if a programmer stays away from
things like jump tables and other indirect
addressing on an Intel chip, a .COM program or
any portion of it should be relocatable within
the current segment, no?

(Fm: Jim Kyle to H. Brothers) Hardin, You
realize, of course! that there's a column
crying to be written here. To me, what Joe is
calling "relocatable" is "position independent
code" which will operate the same way no
matter where in memory it's located, without
any changes at all being made to it. My
definition for "relocatable" is based on the

MS-DOS Information - 54 - MS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987

derivation of the word: "capABLE of being
RELOCATed", and in the general sense applies
to any and all code since you can always add
some delta to a hard-coded immediate address
(the first thing I ever saw Gary Kildall's
byline on was a method for doing just that to
8080 code, in an early DDJ). In practice,
though, I follow the G-E mainframe convention
which gave me my first exposure to the idea,
and use it to refer to code which is modified
at LOAD time to account for its memory
location.

Interesting things come from this: when
considered as a single entity, a COM program
is position independent, because the loader
only sets the segment registers and does no
modification at all to the actual image, An
EXE file, on the other hand, is relocatable IF
(and, I think, only if) it makes any
references to the SEG operator of MASM (i.e.,
requires segment fix-ups). Yet the nature of
the relocation done by the loader is not very
different from the non-relocation it does for
COM files.

And, of course, as you point out, all 8086/88
conditional jumps are position independent,
like the Z80 JR or the 68xxx series.

(Fm: LOOS Support to H.
entirely right. Now, I only
what I was thinking of,

Brothers) You are
have to figure out

(Fm: H. Brothers to Jim Kyle) Jim, I agree
that this is fodder for a future column -- was
thinking that to myself when Nate first
brought the subject up. There's a bunch of
experimenting I have to do first, to see
exactly what happens with an EXE file (don't
think I've written many .COM files at all,
lately, BTW) when LINK is done with it and as
the loader gets ahold of it. Of course, the
outcome from a user's point of view is that
almost all programs are relocatable, since the
user doesn't have to worry about addresses nor
whatever happens to be resident in memory
(conflicts in fights over hotkeys, etc., is an
entirely different question).

Hmm -- I wonder if art analog of @WHERE would
have some use? Especially in programs that use
the absolute indexed jumps and calls?

MS-DOS Information - 55 -

Volume I. iv

~ ~
MISOSYS
SOFTWARE FOR YOUR P.C.

Order Now 800-MISOSYS (647-6797)

LB86 TM
- a flexible data manager

Easily used by anyone for managing
their data. It's menu driven for ease of
use: absolutely no programming
needed. Why settle for expensive over
kill with data managers you have to
program when economically priced
LB86 will do mailing labels, customer
lists. registration data.

• Store up to 65.534 records per data base
• U~ to 1 .024 characters per record
• Uo to 64 fields per record
• Uo :o 254 characters per field
• Nme field types for flexibility
• Seiect and sort on up to 8 fields
• Kee• 5 different indexes for data access
• ,a 1nout/update screens per data base
• ~C =nntout formats per data base
• Ex:ansive on-line help always available

LB86 [L-86-510] $74.95 + $5 S&H

DED86 TM
- won't leave you puzzled.

A powerful sector-oriented disk/file
editor and a page oriented memory
editor. Search your entire disk while
you tag sectors or clusters to be
"'kept"': direct DED86 to write the sec
tors as a disk file. Great for file re
covery without fussing over FATs.
DED86 gives you important features:

• Posrtion by cylinder/head/sector
• Position by logical sector or cluster
• Jumo about subdirectories
• Keeo sectors/clusters/memory
• Ec1t ovtes in hexadecimal or ASCII
• Search strings in ASCII or hexadecimal
• DOS subshell available for your use

DED86 [M-86-020] .. $59.95 + $5 S&H

~

ISOSYS, Inc.
PO Box239
Sterling, VA 22170-0239 ~ 703-450-4181 MC, VISA.CHOICE

VA residents add 4112% sales tax. S&H:
Canada add $1;

Foreign use S&H times 3

MS-DOS Information

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Applications for the User
UNDATE - by Luis M. Garcia-Barro

I wrote UNDATE in answer to the query from
Kenyon F. Karl, and to your guidelines (THE
MISOSYS QUARTERLY), page 48, Winter 1987), in
reference to the incompatibility created by
the new time/date stamp of LOOS 5.3. Since I
am not a CIS subscriber, I have not a way of
sending it to him.

UNDATE/CMD
For LOOS only

(c)l987 Luis M. Garcia-Barrio
Free distribution. Not for sale

Syntax: UNDATE :drive

The new time/date stamp used by LDOS 5.3 and
LS-DOS 6,3 has created a minor incompatibility
with previous releases of those DOSs. In the
new format, bytes 18, 19 of each directory
entry are used by the date/time stamp. Under
the old format those bytes were used by the
ACCESS password. (This incompatibility was

mentioned in THE MISOSYS QUARTERLY, Winter
198 7).

As a result, a disk formatted (or
DATECONVerted) with LDOS 5.3 OR LS-DOS 6.3,
will appear to have all its files with ACCESS
password protection when used under LDOS 5.1
or TRSDOS 6.2. There are two ways to solve the
problem: (1) Format all disks with LDOS 5.1 or
TRSDOS 6.2. The ·new versions of those DOSs
will not attempt to stamp the files with the
date/time, (2) UNDATE the disks, by resetting
bit 3 of GAT+CDH and giving files an ACCESS
password of 8 spaces. LDOS 5.3/LS-DOS 6.3 will
access them as if formatted with LDOS
5.1/TRSDOS 6.2, and these two will access them
as their own. In short, UNDATE reverses the
process of DATECONV.

The problem I can foresee is a file trying to
access another, expecting it to have an ACCESS
password. In those rare cases, use ATTRIB to
change the password. For bug reports,
suggestions etc., leave a note to the sysop at
8/N/l #4, (215) 848-5728.

00001 ,------------- ---- -- - ----

4030
4209
4451
4467
4409
002B
428A
0060
478F
4777
4772
4768
429F
442B
5200
5200
5204
5205
5208
520B
520E
520F
5210
5212
5213
5215

ED73C052
ES
CDE752
214253
CD6744
El
7E
FE20
23
28FA
FE3A

00002
00003
00004
00005
00006
00007
00008 ,

UNDATE/CMD by Luis M. Garcia-Barrio, 8/N/1 #4 (215) 848-5728
For free distribution. Not for sale,

Based in LDOS 5.3 DATECONV/CMD
Allows conversion of LDOS 5.3/LS-DOS 6.3 disks with the

new date/time stamp to the LOOS 5.1 standard format.
The ACCESS password installed is 8 spaces (no password).

00009 @ABORT EQU
00010 @CKDRV EQU
00011 @DIV EQU
00012 @DSPLY EQU
00013 @ERROR EQU
00014 @KBD EQU
00015 @LOGOT EQU
00016 @PAUSE EQU
00017 GETDCT EQU
00018 RDSECT EQU
00019 VERSEC EQU
00020 WRPROT EQU
00021 KFLAG$ EQU
00022 SFLAG$ EQU
00023 ORG
00024 START
00025
00026
00027
00028
00029
00030 PRAMS
00031
00032
00033
00034

LD
PUSH
CALL
LD
CALL
POP
LD
CP
INC
JR
CP

4030H
4209H
4451H
4467H
4409H
002BH
428AH
0060H
478FH
4777H
4772H
4768H
429FH
442BH
5200H
(SPSAVE),SP
HL
KEY
HL,TITLE
@DSPLY
HL
A, (HL)
20H
HL
Z,PRAMS
3AH

;save for the end
;save parameters

;say who

;parameters in HL

;bypass the spaces

; look for II • II

Applications for the User - 56 - Applications for the User

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

5217
521A
521B
521D
521F
5222
5225
5228
5229.
522C
522F
5232
5235
5238
523B
523C
523E
5241
5244
5246
5248
524B
524E
5251
5252
5253
5255
5258
525B
525D
525F
5261
5263
5264
5267
5269
526C
526D
526F
5272
5274
5275
5277
527A
527C
527F
5282
5283
5286
5289
528C
528D
528E
5290
5291
5294
5297
5298
5299
529A
529B

C23E53
7E
D630
FE08
D23E53
320D53
321F53
4F
CD0942
C23E53
DA2E53
CD8F47
FD7E09
325252
57
lEOO
CD1B53
3ACD55
CB5F
2009
214554
CD6744
C33853
1600

1E03
CD1B53
3A1455
D602
FE21
3802
3E20
3C
329852
1E02
CD1B53
E5
CB66
CA8652
DDE5
El
3E96
DD7712
3E42
DD7713
3A7054
3C
327054
CDE752
C23253
El
7D
C620
6F
C26C52
CD0953
3EOO

IC
BB
D26952

00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058 NEWTYPE
0005 9 DIRCYL
00060
00061
00062
00063
00064
00065
00066
00067 FILES
00068
00069
00070 GET
00071 AGAIN
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083 NEXT
00084
00085
00086
00087
00088
00089
00090
00091
00092 DIRSIZE
00093
00094
00095

Applications for the User

JP
LD
SUB
CP
JP
LD
LD
LD
CALL
JP
JP
CALL
LD
LD
LD
LD
CALL
LD
BIT
JR
LD
CALL
JP
LD
EQU
LD
CALL
LD
SUB
CP
JR
LD
INC
LD
LD
CALL
PUSH
BIT
JP
PUSH
POP
LD
LD
LD
LD
LD
INC
LD
CALL
JP
POP
LD
ADD
LD
JP
CALL
LD
EQU
INC
CP
JP

NZ,BADDRV
A,(HL)
30H
8H
NC,BADDRV
(DRIVEW) ,A
(DRIVER) ,A
C,A
@CKDRV
NZ,BADDRV
C,WPDRIV
GETDCT
A, (IY+9H)
(DIRCYL) ,A
D,A
E,OH
READS
A, (GATCD)
3,A
NZ,NEWTYPE
HL,MSGOLD
@DSPLY
EXITOK
D,OH
$-lH
E, 3H
READS
A, (DIRERN)
2H
21H
C,FILES
A,20H
A
(DIRSIZE) ,A
E,2H
READS
HL
4, (HL)
Z,NEXT
IX
HL
A, 96H
(IX+12H) ,A
A,42H
(IX+13H) ,A
A, (CHANGD)
A
(CHANGD) ,A
KEY
NZ,ABORT
HL
A,L
A,20H
L,A
NZ,AGAIN
WRTSYS
A,OH
$-lH
E
E
NC,GET

- 57 -

;check for drive 0-7

;store drive for writes
; and for reads
;check the drive in C

;if drive is not available
;if disk is write protected
;else get DCT address in IY
;DCT+9 is the DIR cylinder
;store the DIR cylinder number
;and prepare to read it

;read GAT
;type-of-disk byte
;bit 3 set for new date/time?

;tell that is it old type

;and do not bother any more

;read sector 3 of DIR cylinder

;ERN of DIR/SYS
;find the number of sectors

to be read

;read sector 2 of DIR cyl
; read a sec tor

;is the record in use?

;first byte of PASSWORD
;in place
;second byte of PASSWORD
; in place
;number of files updated

;in place

;restore pointer
;advance to next entry

;last entry in sector?
;if so, write the new sector

;done with all DIR sectors?

Applications for the User

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I.iv

529E IEOO 00096 LD E,OH ;if so, read GAT sector
52AO CD1B53 00097 CALL READS
52A3 3ACD55 00098 LD A, (GATCD)
52A6 E6F7 00099 AND OF7H ;reset bit 3 of GAT+CDH
52A8 32CD55 00100 LD (GATCD) ,A ;in place
52AB CD0953 00101 CALL WRTSYS ;write new GAT
52AE 2A7054 00102 LD HL, (CHANGO) ;number of changes to
52Bl 11EA53 00103 LD DE,MSGI ;prepare exit message
52B4 D5 00104 PUSH DE
52B5 CDCE52 00105 CALL MSGINO ;put number in message
52B8 El 00106 POP HL
52B9 CD8A42 00107 CALL @LOGOT
52BC 210000 00108 LD HL,OOOOH
52BF 310000 00109 EXIT LD SP,OOOOH ;restore SP and prepare to end
52CO 00110 SPSAVE EQU $-2H
52C2 7C 00111 LD A,H
52C3 BS 00112 OR L
52C4 CB 00113 RET z
52C5 3A2B44 00114 LD A, (SFLAG$)
52C8 CB6F 00115 BIT 5,A
52CA CB 00116 RET z
52CB C33040 00117 JP @ABORT
52CE 0605 00118 MSGINO LD B,5H ;put fF of files in message
52D0 3E20 00119 LD A, 20H ;first 5 spaces in place
52D2 12 00120 MSGINI LD (DE) ,A
52D3 13 00121 INC DE
52D4 IOFC 00122 DJNZ MSGINI
52D6 D5 00123 PUSH DE ;do it backwards
52D7 IB 00124 DEC DE
52D8 3EOA 00125 MSGIN2 LD A,OAH ;HEX to DEC
52DA CD5144 00126 CALL @DIV
520D C630 '00127 ADD A,30H ;to ASCII
52DF 12 00128 LD (DE) ,A ;in place
52EO IB 00129 DEC DE
52El 7C 00130 LD A,H
52E2 BS 00131 OR L
52E3 20F3 00132 JR NZ,MSGIN2 ;till done with the five
52E5 DI 00133 POP DE
52E6 C9 00134 RET
52E7 ES 00135 KEY PUSH HL ;kb check for <BREAK>
52E8 219F42 00136 LD HL,KFLAG$
52EB CB46 00137 BIT 0, (HL)
52ED 2818 00138 JR Z,KEY3
52EF F5 00139 PUSH AF
52FO cs 00140 PUSH BC
52Fl D5 00141 PUSH DE
52F2 CB86 00142 KEYl RES 0, (HL)
52F4 01000B 00143 LD BC,OBOOH
52F7 CD6000 00144 CALL @PAUSE
52FA CB46 00145 BIT 0, (HL)
52FC 20F4 00146 JR NZ,KEYl
52FE CD2BOO 00147 KEY2 CALL @KBD
5301 B7 00148 OR A
5302 20FA 00149 JR NZ, KEY2
5304 DI 00150 POP DE
5305 Cl 00151 POP BC
5306 Fl 00152 POP AF
5307 El 00153 KEY3 POP HL
5308 C9 00154 RET
5309 210055 00155 WRTSYS LD HL,BUFSEC ;write system sector
530C OEOO 00156 LD C,OH

Applications for the User - 58 - Applications for the User

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

530D
530E
5311
5313
5316
5318
531A
531B
531E
531F
5320
5323
5324
5326
5327
5329
532C
532E
5331
5332
5335
5338
533B
533E
5340
5342

CD6847
2014
CD7247
FE06
200D
C9
210055
OEOO

CD7747
C8
FE06
cs
F6CO
CD0944
180A
212E54
DD
211554
CD8A42
21FFFF
C3BF52
3E20
18E5
OA
OA
55
4C
OA
28

5344
5356
537B
537C
539A 20
53B3 OA
53B5 54
53D7 20
53E8 OA
53EA 20
5414 OD
5415 44
542D OD
542E 57
5444 OD
5445 54
546F
5470
5500
55CD
5514
5200

OD
0000

00157 DRIVEW EQU
00158 CALL
00159 JR
00160 CALL
00161 CP
00162 JR
00163 RET
00164 READS LD
00165 LD
00166 DRIVER EQU
00167 CALL
00168 RET
00169 CP
00170 RET
00171 ERROR OR
00172 CALL
00173 JR
00174 WPDRIV LD
00175 DEFB
00176 ABORT LD
00177 CALL
00178 EXITOK LD
00179 JP
00180 BADDRV LD
00181 JR
00182 TITLE DEFB

00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204

DEFM
DEFM
DEFB
DEFM
DEFM
DEFB
DEFM
DEFM
DEFB

MSG! DEFM
DEFB

MSGABR DEFM
DEFB

MSGWP DEFM
DEFB

MSGOLD DEFM
DEFB

CHANGD DEFW
BUFSEC EQU
GATCD EQU
DIRERN EQU

END

STRIP/BAS - by James Beard, Ph.D.

$-lH
WRPROT
NZ,ERROR
VERSEC
6H
NZ,ERROR

HL, BUFSEC
C,OH
$-lH
RDSECT
z
6H
z
OCOH
@ERROR
EXITOK
HL,MSGWP
ODDH
HL,MSGABR
@LOGOT
HL,OFFFFH
EXIT
A,20H
ERROR
OAH,OAH

;drive number for writes

;read disk sector

;drive number for reads

;changes next to LD IX,xxxx

'UNDATE/CMD vl.O -
'LOOS 5.3 to LOOS 5.1 Date Conversion.'
OAH
'(c)1987 Luis M. Garcia-Barrio,'
' 8/N/1 #4 (215) 848-5728.'
OAH,OAH
'The ACCESS passwords for all files'
'will be removed.'
OAH,ODH

file(s) updated, conversion complete'
ODH
'Date conversion aborted!'
ODH
'Write protected drive!'
ODH
'This disk does not use the time/date stamp'
ODH
OOH
5500H
BUFSEC+OCDH
BUFSEC+14H
START

when the source file is NULL.

I had occasion to search for a way to strip
off the last byte of a file - for purposes
that I don't need to go into here. My first
attack was to try the appending a NULL file to
the target file with the OS's APPEND command
using the STRIP parameter; but APPEND aborts

My next attack was to write the STRIP/BAS
program in BASIC which follows. This can be
used to remove the last character of a file by
copying all but the last character to another
file.

Applications for the User - 59 - Applications for the User

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987

10 DEFINT I-N: INPUT "Input filespec? ",INFILE$: OPEN"R",1,INFILE$
20 INPUT "Output filespec? ",OUTFILE$: OPEN 110 11 ,2,0UTFILE$
30 LC=VARPTR(1fol): GET 1: IPTR=O: OD$=""
40 GOSUB 80: ITYPE=ASC(CH$): GOSUB 80: NLEN=ASC(CH$): PRINT ITYPE,NLEN
50 IF NLEN(3 THEN IF ITYPE<>2 THEN NLEN=NLEN+256 'Allow lengths to 258 bytes
60 FOR I=l TO NLEN: GOSUB 80: NEXT I 'Feed through block
70 IF ITYPE=2 THEN PRINT# 2,0D$;: CLOSE: END ELSE GOTO 40
80 IF IPTR=255 THEN 100
90 CH$=CHR$(PEEK(LC+IPTR)): IPTR=IPTR+l: OD$=OD$+CH$: RETURN
100 CH$=CHR$(PEEK(LC+IPTR)): PRINT1fo 2,0D$;CH$;: OD$="": GET 1: IPTR=O: RETURN

Volume I. iv

MORSE Code from a Model 4

(Fm: MISOSYS) Here's one I found on one of the
hard drives which we acquired when we acquired
the retail operation of Logical Systems last
year. Judging from some other files, I was
able to discern that this Morse code program
was derived from one written for the IBM PC.
Apparently, LSI reworked it for use on a Model

4. I note that LINE 100 pokes 18H into low
memory. This makes a slight alteration to the
@SOUND routine. The address is consistent
across 6.2 and 6.3. On the other hand, the
original value of 28H is not restored when you
terminate the program (the menu doesn't really
give you an option to STOP). Anyway, for what
it's worth to you aspiring Morse code folks,
here's CODE/BAS.

100 POKE &H3AF,&Hl8:CLS
110 CLEAR 5000:DEFINT A-Z:DIM TBL$(48)
120 FOR L= 1 TO 42:READ TBL$(L):NEXT
130 RATE=2:TONE=S:V=-l:RANDOM
140 DELAY=lOO*RATE:IF DELAY=O THEN DELAY=SO
150 DOT=RATE
160 DASH=RATE*4:IF DASH=O THEN DASH=2
170 GOTO 530
180 A$=INKEY$: IF A$="" THEN 180
190 IF A$= 11@" THEN 530
200 GOSUB 210:GOTO 180
210 IF A$>"@ 11 THEN A$=CHR$(ASC(A$)AND &HSF):PRINT A$; 11 11

; ELSE 230
220 CODE$=TBL$(ASC(A$)-64):GOTO 290
230 PRINT A$; 11 11

;

240 IF A$< 11
," OR A$>";" THEN 260

250 CODE$=TBL$(ASC(A$)-43+26):GOTO 290
260 IF A$= 11

(
11 OR A$=")" THEN CODE$="-.--.-":GOTO 290

270 IF A$="?" THEN CODE$=" •• -- •• ":GOTO 290
280 PRINT:FOR L=l TO DELAY*20:NEXT:RETURN
290 A$=CODE$:PRINT A$
300 FOR L=l TO LEN(A$)
310 IF MID$ (A$, L, 1)=". 11 THEN SOUND TONE, DOT ELSE SOUND TONE, DASH
320 FOR LL= 1 TO DELAY*2:NEXT
330 NEXT: FOR L= 1 TO DELAY*9:NEXT
340 RETURN
350 PRINT:PRINT 11Enter Filespec: ";:LINE INPUT F$
360 OPEN 11R",l,F$,l
370 FIELD #1, 1 AS C$
380 FOR F= 1 TO LOF(l):GET l,F:A$=C$:GOSUB 210
390 A$=INKEY$:IF A$="@" THEN CLOSE:GOTO 530
400 NEXT F:CLOSE:GOTO 530
410 DATA • , ••• , • • , - •• , • , •• - • , • , •••• , •• , • --- , - • - , • - •• , , • ,
420 DATA.-., ... ,-, .. -, .•. -,. , .. -,-.--,--

' .
430 DATA , •••• -,.-.-.-,-•• -., ,. ' .. ' ... ' - '
440 DATA - •••• , ••• , •. , • , ••• , •
450 A$=INKEY$: IF A$="@" THEN 530
460 A=RND(79)+43:A$=CHR$(A):GOSUB 210:GOTO 450

. '

470 PRINT:PRINT "5 = 4 WPM, 4 = 5 WPM, 3 = 7 WPM, 2 10 WPM, 1 = 16 WPM, 0 = 26 WPM"

Applications for the User - 60 - Applications for the User

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987

480 PRINT:PRINT"Set Rate (0-7): ";:INPUT A
490 IF A<0 OR A>7 THEN 480
500 RATE=A:GOTO 140
510 PRINT:PRINT"Set TONE (0-7): ";:INPUT TONE
520 IF TONE<0 OR TONE>7 THEN 510
530 CLS: PRINT: PRINT TAB(13) "M O R S E C O D E LEARNING S Y S T E M"
540 PRINT TAB(13)"Version 1. 0. 9 - Feb. 1985 - by Logical Systems Inc."
550 PRINT TAB(21) "This program is Pub lie Domain"
560 PRINT: PRINT: PRINT: PRINT TAB(28) "M A I N M E N U"
570 PRINT: PRINT: PRINT, "(l) •••• Set TONE 11

580 PRINT,"(2) Set RATE"
590 PRINT, "(3) Send Ase ii FILE 11

600 PRINT, " (4) Send from KEYBOARD"
610 PRINT,"(5) Send RANDOM sequences"
620 PRINT,"(6) Send QUIZ"
630 PRINT: PRINT, "The <@> key wi 11 return you to this menu"
640 PRINT:PRINT,"Your selection please: ";:LINE INPUT MM$
650 MM=VAL(MM$): IF MM<l OR MM)6 THEN 530
660 CLS:ON MM GOTO 510,470,350,180,450,670

Volume I.iv

670 CLS:PRINT"You will be sent a character, you must respond by typing that character. 11

680 PRINT"<SPACE> will RESEND the character (counts as 1 wrong)
690 PRINT"<*> will PASS the character (counts as 1 wrong)"
700 PRINT"<Fl> will TOGGLE VIDEO display of dit/dah"
710 PRINT"<@> will TERMINATE quiz and display score"
720 PRINT
730 PA=0:CA=0:RT=0:Q=0:WA=0:GOTO 850
740 B$=INKEY$: IF B$=11

" THEN 740
750 IF B$=CHR$(129) THEN V=V*-1:GOTO 740
760 IF B$>"@" THEN B$=CHR$(ASC(B$) AND &H5F)
770 IF B$=Q$ THEN 820
780 IF B$=" 11 THEN GOSUB 300: RT=RT+l: GOTO 740
790 IF B$= 11@" THEN 930
800 IF B$="*" THEN WA=WA+l: PA=PA+l: GOTO 830
810 WA=WA+l:GOTO 740
820 CA=CA+l
830 PRINT " ("; Q$; ") ";
840 FOR L=l TO 2000:NEXT L
850 IF Q/8=INT(Q/8) THEN PRINT
860 Q=Q+l
870 GQ=RND(47)+43:Q$=CHR$(GQ)
880 IF Q$>"@" AND Q$=<"z" THEN CODE$=TBL$(GQ-64):GOTO 910
890 IF Q$> "," AND Q$< ";" THEN CODE$=TBL$ (GQ-43+26): GOTO 910
900 GOTO 870
910 IF v<o THEN PRINT " ";CODE$;
920 A$=CODE$:GOSUB 300:GOTO 740
930 Q=Q-1:PRINT:PRINT:PRINT"Characters sent:";Q
940 PRINT"Retries sent : ";RT
950 PRINT"Correct answers: 11 ;CA
960 PRINT"Wrong answers : ";WA
970 PRINT"Passes :";PA
980 PRINT"Percent correct with retries : "; (CA/Q)*lO0; "%"
990 PRINT"Percent correct without retries:"; (CA/ (Q+RT+WA))*100; 11%11

1000 PRINT:PRINT,"Press <@> to return to menu";
1010 A$=INKEY$: IF A$=11@" THEN 530 ELSE 1010

Applications for the User - 61 - Applications for the User

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Data Indexing using
VICTORIA, AUSTRALIA

BASIC by Paul Wade, SCRIPSIT - previewing output

The (not quite so recently arrived) Misosys
Quarterly was again up to the professional
standard that I have come to expect of
yourself, please keep up the good work.
Accompaning this letter is a program (written
in BASIC using The Basic Answer, TBA). Files
are as follows: (1) LIBENTRY/TBA, TBA source
of the cross reference data entry programs;
(2) LIBREAD/TBA, TBA source of the cross
reference data retrival program; (3)
LIBENTRY/BAS, compiled and packed basic
program; (4) LIBREAD/BAS, compiled and packed
basic program; (5) LDOSINFO/DAT, title file
names for cross reference programs to access;
(6) LDOSINFO/TXT, data file of cross
referencing to the title file;
(7)INSTRUCT/TXT, instructions on using the
cross reference programs in ASCII but will run
as a basic program.

This program was originally written by myself
for a friend who is a social worker at a
nearby hospital. He required some method of
being able to compile data on successful
methods of treatment. The example in his case
was that the title was the name of the patient
and the data for the txt file was the
treatments provided (e.g. drugs, ect,
accomodation help, welfare payments etc.),
with all the data entered by specifing
treatments recived he could find the patient.
As this is an ongoing method updating had to
be quick and easy.

The example that I have included with the disk
contains the references to all your previous
'NOTES', 'the LOOS publications' and now
'TMQ'. I realise that BASIC is not the best
language for such a program but looking around
I could not see any other program which would
allow such a file structure, since the size of
the search is only limited by the disk space
(versafile is about the next closest program
that I know about, perhaps nobody has ever
done it before?). The biggest problem I have
with it is the search time; perhaps 'EnhComp'
would speed it up? (for cooks state the
ingredients and the program will sort out the
possible recipies - imagine Gargleblasters!).
You have my permission to include it in
contributions (public domain but rights
reserved, if your laws are as I understand
them). [Because of the extent of the
contribution, it will appear only as part of
DISK NOTES 8 -Ed]

Here's a little tip for those of you still
using Model 4 SCRIPSIT. We still use it here
at MISOSYS for some word processing jobs;
specifically letters and small documentation
booklets. We have always wanted to conserve
paper; thus, we have always looked for better
ways to proofread rough drafts of text for
form, content, and outline.

Back in July of 1984, we put together a series
of patches for Tandy's SCRIPSIT program. These
patches were called MPATCH and they were
published in NOTES FROM MISOSYS, Issue III
(the /FIX files are also on DISK NOTES III).
The primary enhancement to SCRIPSIT added by
these patches was the 'Q' command. This
command allows you to invoke any DOS library
command (or other program running totally in
the library region of the DOS) from within
SCRIPSIT. For instance, one can easily invoke
a DIR command, or a REMOVE, or ROUTE for that
matter.

The 'Q' command makes it very easy for us to
preview the formatted text output of SCRIPSIT
- without wasting any paper. This operation
makes use of three DOS commands: ROUTE, RESET,
and LIST. The idea is to redirect the printer
device to a disk file with a command of the
form:

ROUTE *PR PRINT/TXT:2

Since the DOS needs some high memory to set up
a buffer and file control block space for such
a ROUTE command, I issue this command before
entering SCRIPSIT. When I am in SCRIPSIT ready
to print, since the *PR device is redirected
to a disk file, SCRIPSIT generates a listing
file instead of actually generating the output
to the printer - it doesn't know that the DOS
is sending the "printer" output to a disk
file, nor does it care. Using the 'Q' command
once the "printing" has stopped, I can close
the listing file and restore the *PR device by
simply invoking a,

RESET *PR

DOS command; again from within SCRIPSIT using
the 'Q' command added by the MPATCH. Now I am
ready to look at the file listing. For this, I
use the DOS command (invoked via the 'Q'
command),

LIST PRINT

Applications for the User - 62 - Applications for the User

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

I have the convenience of the PAUSE facility
(SHIFT@) to slow down the listing while I
read it, This gives me the advantage of making
revisions to the source text without having to
waste paper, ribbons, and typewheels. And
printing to a disk file is quick - especially
if its a hard disk or a RAM disk.

When I am ready to generate another "listing",
I can easily invoke the ROUTE command from
within SCRIPSIT. That's because the DOS will
re-use the high memory previously allocated
during the first invocation of ROUTE *PR
PRINT /TXT". of course, I have to add the
"(REWIND)" parameter to that ROUTE command to
ensure that subsequent "printings" are not
appended to PRINT/TXT but rather written anew.

,;i,'

Now another DOS facility further eases the
burden of issuing these 'Q' commands; that
facility is Key Stroke Multiplication (KSM),
If you haven't used KSM, you better start
looking at it; it can save you a great deal of
repetitive typing. Here are the KSM strings I
use which are pertinent to this modified
version of SCRIPSIT.

q list print:2;;
q reset *pr;;
q route *pr print/txt:2 (r;;
Sincerely,;;;;;Roy Soltoff;
This is in response to your letter of

The semicolons are important. KSM allows you
to specify a logical <ENTER) character which
defaults to the semicolon. In the 'q' commands
noted above, you will find them terminated by
two semicolons; one designates an <ENTER) to
complete the DOS command while the second
designates an <ENTER> to satisfy the 'Q'
command's prompt after completing the
requested command, Finally, I normally assign
the LIST string to the 'L' key, the RESET
string to the 'Q' key, and the ROUTE command
to the 'R' key, although you can make those
assignments to suit yourselves. If you use
Model 4 SCRIPSIT without the MPATCH, you are
losing out on some very handy enhancements.
DISK NOTES 3 are still available for $10 plus
S&H ($2 in the US).

Applications for the User - 63 -

Your Model 4 computer
may not speak XZ#M%S

But with MISOSYS
language products, she will
speak ASSEMBLER, BASIC,

C, and RATFOR

PRO-CREATE - The "standard" macro assembler used by
professionals and novices alike. Nested macros, nestea
includes, nested conditionals. Full screen editor; cross
reference .. $74.95 + $4 S&H

PRO-DUCE - A 2-pass labeling 280 disassembler from disk or
memory with screening input for data areas. Generates I ASM
files. .. $34.95 + $2 S&H

PRO-MRAS - Powerful relocating macro assembler devel
opment system REL module compatible with Microsoft!
Includes full screen text editor, REL librarian, VM linker with
overlay capability $89.95 + $4 S&H

UNREL-TS0 - Converts MRAS or M-80 REL object files to
/ASM. Use on your own REL modules, FORLIB. GRUB,
BASCOM, BASRUN, etc. $49.95 + $2 S&H

PRO-EnhComp - An enhanced BASIC compiler with a built-in
assembler for 280 in-line code mixed with BASIC. LOGO-like
turtle graphics, strings to 32767 chars. multi-line functions,
keyed/tagged SORT, REPEAT-UNTIL, structured IF-ENDIF
labeled statements, double precision functions. '

·· $124.95 + $4 S&H

LS-TBA - A structured BASIC translator. Labeled statements,
. Conditional translation, pseudo global and local variables,
14-charvarnames••.............• $39.95 + $4 S&H

PRO-MC - A full K&R C compiler with nearly 200 functions.
Structs, unions, bitfields, enum, dp floats and functions.
Wildcards, 1/0 redirection, args, overlay support. Requires
PRO-MRAS or M-80 Sl 24.95 .,. $4 S&H

RATFOR-M4 - A professional implementation of RATional
FORtran. Provides stucture and greater portability to
FORTRAN programs. Fully documented with tutorial user
manual. Requires FORTRAN compiler $99,95 + $5 S&H

Note: Model 1/111 products may be available on request.

~
~

8
l
0
~~SYS, Inc.

Sterling, VA22171M1239
~ 703-450-4181 MC, VISA. CHOICE

Orders Only! 800-MISOSYS 1P-5P EST Monday-Friday

VA residems add 4½% sales tax. S&H: Canada add S1;
Foreign use S&H times 3

Applications for the User

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

The Programmer's Corner
Using I/O redirection with
debugging purposes - by Michael
CIS #:73240,1777 - 05/06/87

PRO-MC for
R. Johnston -

Users of MISOSYS' MC or PRO-MC compilers may
or may not know of the special I/0 redirection
inherent in the pre-processor (MCP) and
compiler (MC) that are part of the package.
Using these features it becomes possible to
save a great deal of time and some money. In
this article I will attempt to give some
helpful instructions on using this feature.

made before we
output file
This file is
notices and

Some special notes need to be
proceed. First, the standard
(stdout) is normally the CRT.
used to display all copyright
informative messages such as
STDIO.H'.

'Including:

Second, the standard error file (stderr) is
used by the pre-processor and compiler to
output ERROR messages. Normally stderr is
sent along with stdout to the CRT. It is only
when one begins to play with the redirection
feature of these two programs that the two
begin to go their separate ways.

Turning to page 1-8 of the MC manual one will
notice on the bottom of the page, a general
example of how stderr might be redirected:

MC TESTLIB 1/:'kPR

This example has all error messages that the
compiler outputs , going to the printer. The
astute observer will note that although this
example has used a printer as the target for
the output, this does not necessarily mean
that it could not be directed elsewhere. In
fact, using the wonderful facilities of DEVICE
INDEPENDENCE that were so thoughtfully
included in TRSDOS, one can redirect this
error message output to ANY device or FILE.

Since there are no other examples of this
remarkable feature given in the manual, it is
left to the user to uncover and utilize them.

A practical example is one where stderr is
redirected to a file for reference when
debugging. If you are using SAID (the text
editor supplied with the MRAS package) you
could use this error listing to aid in your
debugging process. In fact, the error messages
will tell you which line that the problem
occurred. It is then a simple matter to use
the GO command provided in t-he META-MENU , to
locate the line for you.

The ideal setup is one where you load the C
source file in one bank and have the error
file in another. All one has to do then is to
switch between banks when referencing error
messages.

By redirecting stderr to a file you also
avoid another problem: **** THE PAPER BLOB
****• Yes, that disgusting animal that
proliferates beside your desk when debugging
will no longer have a fighting chance. And
there is yet another advantage to this method
too: Your wife won't throw your printer out
the window because it is keeping her awake.

It may also be possible to write a filter that
will read the error file and make a note of
what line numbers are in error. The filter
could then feed SAID with the GO commands and
LINE numbers to position the cursor to the
proper place in the file for correction. Of
course this would require someone to actually
WRITE a filter for this specific purpose.
Which is something that most people are
probably not willing to do. However in the
long run it would prove to be worth it in
terms of the amount of time saved looking for
the line numbers in the listing and then
issuing the proper GO command. Just a pipe
dream of course but possibly worth looking
into if your serious about pro-gramming in C
on the mod 4.

Writing FILTERS for LS-DOS 6.x by Roy Soltoff

Because of the size of TMQ I.iii, a few
articles (programs) had to be deferred. One
was a discussion of filters for DOS 6.x. I'll
pick that up in this issue; Rich's stat()
function and rm utility will have to still be
deferred.

Device filters have been an inherent part of
the LOOS 5.x and LS-DOS 6.x environment since
the early days. Device filters are kind of
neat; they provide an opportunity to alter the
behavior of a device. For instance, both LOOS
and LS-DOS come supplied with a key stroke
multiplication filter (KSM/FLT) and a printer
filter (PR/FLT or FORMS/FLT), both of which
alter the utility of the *KI and *PR devices,
respectively.

Under the LDOS 5.x environment, Logical
Systems (and subsequently MISOSYS) have made
many other filters available in the FILTER!
and FILTER2 program products (now bundled into
The Mark III Collection). At one time, MISOSYS
offered a proportional spacing filter for the

The Programmer's Corner - 64 - The Programmer's Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

DW-II. There also were filters as part of the
MSP-02 package. For LS-DOS 6.x users, the LS
UTILITY disk (still available) has provided a
KSMPLUS filter. The PRO-ESP package which we
used to sell also included filters (it's
bundled now into The Mark IV Collection). I
would hazard a guess that our Compuserve forum
also houses some filters. THE PROGRAMMER'S
GUIDE TO TRSDOS 6 (once again available from
MISOSYS for $25 + $3S&H) even lists three
complete filters for DOS 6 in its Appendix.

On the other hand, more filters were available
for LOOS 5.x than were made available for LS
DOS 6.x. Why is that? Well for one thing, the
architecture of a filter was changed to
accomodate the altered architecture of the
device handler in LS-DOS 6.x. I changed the
structure of the device handler in 6.0 for
many important reasons. Here's a few: LSI
received many complaints over the inability to
RESET devices and conveniently re-install a
filter. Numerous kludges were implemented to
various releases of 5.x's filters to provide a
limited form of re-installation. The LOOS
device handler also did not permit filtering a
ROUTEd device. Linking also took up high
memory with a link module for each LINK
command. It was also necessary for a 5.x
filter to pick up vector values from the
filtered device's DCB and poke in its own.
Also, when filtering the *KI device, the
filter installation code had to account for
the effect of JCL operation on the *KI DCB's
vector. All in all, it was very messy. Now the
ground rules for the device handler were
restricted by the ROM resident device I/0
routines; specifically, @GET, @PUT, and @CTL
handlers were in ROM - unchangeable.

00001 ;PAGEPAWS/FLT Version
4030 00002 @ABORT EQU 4030H
4467 00003 @DSPLY EQU 4467H
402D 00004 @EXIT EQU 402DH
002B 00005 @KBD EQU 002BH
5200 00006 ORG 5200H
5200 D5 00007 PUSH DE
5201 lA 00008 LD A, (DE)
5202 F5 00009 PUSH AF

The development of DOS 6.0 permitted me to
clean up that mess and design a reasonable
device handler. I think that got accomplished.
Anyone who has read my discussion of device
handling which appeared in the book mentioned
above should be able to bear that out. Since
most of the filters I mentioned above were
written by LSI, perhaps there just wasn't
sufficient time to adapt all of them to 6. x.
On the other hand, they may have felt that not
enough people purchased the 5.x versions which
resulted in no justification to spend any
further time on them.

What follows then is a look at one of the
filters from the filter pack, PAGEPAWS. This
module is designed to filter the *PR device
and pause awaiting a keystroke when a form
feed is received. That allows you to use
single sheets to feed a printer when the
program is expecting continuous forms. Let's
take a look at the LOOS 5.x version of this
filter. But first, some information is needed.
Let's look at a command such as:

FILTER *XY PAGEPAWS

The DOS's FILTER library command will search
the device tab le for the "XY" device, then
load the PAGEPAWS module - assuming *XY was
found. When control is passed to the filter
program, register DE contains the address of
the DCB for the device designated. Register HL
points to the next character on the command
line so the filter module could check for
parameters/options/etc. Now the LDOS 5.x
filter •••

5.1 ~•~•••=.~----..-....,...., ¼A7":".-,.C•a" ... •·=--•

S\([fl ntiG
f)_(). CO)<. 2::7

PADSTOVV N. S. W. 2211 --=...,._,,_,_,_
;type byte

5203 217552 00010 LD HL, SIGNON
5206 CD6744 00011 CALL @DSPLY

00012 ·*=*=* ' 00013 ; Mod I or III determination
00014 ·*=*=*

' 5209 3A2501 00015 LD A, (125H) ;Mod I or III?
520C FE49 00016 CP 49H ;III=49h
520E 2808 00017 JR Z,M3
5210 214940 00018 LD HL,4049H ;Mod I HIGH$
5213 ll 7B44 00019 LD DE,447BH ;@logot
5216 1806 00020 JR LDHIGH
5218 211144 00021 M3 LD HL,4411H ;Mod III HIGH$

The Programmer's Corner - 65 - The Programmer's Corner

Volume I. iv

521B
521E
5221
5224
5228
5229
522B
522D
522F
5231
5233

5235
5237
523A
523D
5240

5243
5246
5249
524C
524D
524F
5252
5253
5256
5259
525A
525D
525F
5262
5265
5267
526A
526C
526F
5272

5275

118A42
224452
225052
ED537052
Fl
CB5F
2035
CB67
2036
CB4F
2837

DDEl
DD6E01
DD6602
222553
222953

2AOOOO
221053
012900
AF
ED42
220000
23
DD7501
DD7402
EB
210E53
EDBO
C32D40
210652
1808
21E852
1803
21F952
CDOOOO
C33040

lF

THE MISOSYS QUARTERLY - SPRING 1987

00022 LD
00023 LDHIGH LD
00024 LD
00025 LD
00026
00027
00028
00029
00030
00031
00032

POP
BIT
JR
BIT
JR
BIT
JR

DE,428AH
(MHI+l),HL
(SHI+l),HL
(ERROR+l) ,DE
AF
3,A
NZ,DEVNIL
4,A
NZ,DEVROUT
l ,A
Z,NOTOUT

00033 ;*=*=*
00034 ok to filter device
00035 ;*=*=*
00036
00037
00038
00039
00040

POP
LD
LD
LD
LD

IX
L,(IX+l)
H, (IX+2)
(OUTP 2+1), HL
(OUTP 1 + 1) , HL

;@logot
; install HIGH$

;install @logot
;device type byte
;device set NIL?

;Routed?

;Output device?

;get deb

;get old address
I I

00041 ;*=*=*
00042 ,
00043 ;*=*=*
00044 MHI
00045

install new HIGH$ and move filter code

00046
00047
00048
00049 SHI
00050
00051
00052
00053
00054
00055

LD
LD
LD
XOR
SBC
LD
INC
LD
LD
EX
LD
LDIR

00056 JP
00057 DEVNIL LD
00058 JR
00059 DEVROUT LD
00060 JR

LD
CALL

00061 NOTOUT
00062 ERROR
00063
00064

JP

00065 SIGNON DB

HL, (OOOOH)
(OLDHI),HL
BC ,LENGTH
A
HL,BC
(OOOOH),HL
HL
(IX+l),L
(IX+2),H
DE,HL
HL,PAWSTRT

@EXIT
HL,NILMSG
ERROR
HL,ROUTMSG
ERROR
HL,OUTMSG
OOOOH
@ABORT

;get current HIGH$
;put in filter header
; len of filter

;figure new HIGH$
;store HIGH$

;install addr into deb
;DE to new address
;HL to filter code
;re locate filter
;all done

; ca 11 @LOGOT

Version 5.1',0AH
31, 'PAGEPAWS - Line Printer Pause Filter -

'Copyright (c) 1981 by Logical 52A9 43 00066 DB
Systems', 2CH,'
52D6 44
52E8 44
52F9 4E

530E 180B
5310 0000
5312 08
5313 50

41 47 45

531B 3807
5310 F5
531E 79
531F FEOC

Inc.', OAH, ODH
00067 NILMSG DB
00068 ROUTMSG DB
00069 OUTMSG DB
00070
00071 PAWSTRT JR
00072 OLDHI DW
00073 DB
00074 FNAME DB
50 41 57 53
00075
00076 START JR
00077 PUSH
00078 LD
00079 CP

'Device not active' ,ODH
'Device is routed' ,ODH
'Not an output device' ,ODH

START
$-$
START-FNAME
'PAGEPAWS'

C,OUTP2
AF
A,C
OCH

;HIGH$ before filtering

;tof char

Volume I. iv

The Programmer's Corner - 66 - The Programmer's Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

5321 2804 00080 JR Z,OUTCF
5323 Fl 00081 POP AF
5324 C30000 00082 OUTP2 JP $-$
5327 AF 00083 OUTCF XOR A
5328 CDOOOO 00084 OUTPl CALL $-$
532B D5 00085 KBDl PUSH DE
532C CD2B00 00086 CALL @KBD
532F Dl 00087 POP DE
5330 FEOD 00088 CP OOH
5332 20F7 00089 JR NZ,KBDl
5334 Fl 00090 POP AF
5335 AF 00091 XOR A
5336 C9 00092 RET

00093
0029 00094 LENGTH EQU $-PAWSTRT
5200 00095 END 5200H

Let's take a look at some of this code in more
detail. The first part of the program from
line 1 through line 35 should be pretty
obvious. The three tests at lines 26-32 are
integrity checks of the device being filtered.
Note that I am not going to discuss the
ramifications of filtering in general, that
you can get from THE PROGRAMMER'S GUIDE. The
code from line 36 through 40:

POP
LD
LD
LD
LD

IX
L,(IX+l)
H,(IX+2)
(OUTP2+1), HL
(OUTP 1 + 1) , HL

pops the address of the DCB, originally passed
in register DE by the FILTER command, into
register IY. Then the current driver address
(which could be a filter entry point) is
picked up from the DCB and put into register
HL. This vector is then poked into the
pagepaws filter code so that the filter can
chain to the current device routine.

The code from line 41 through 56 relocates the
pagepaws filter code to high memory. Note that
the actual filter code itself is in lines 71
through 92. The rest of the program consists
of messages and error handling routines. The
front end of the filter

PAWSTRT JR
OLDHI DW

DB
FNAME DB

START
$-$
ST ART-FNAME
'PAGEPAWS'

is the standard module header as documented
for the LOOS environment. It consists of an
absolute branch around the data area, followed
by a word of storage for the previous value of
HIGH$ to be inserted by the filter
installation code , followed by the one byte
module name length, followed by the module

;go if so
;else restore
;do regular driver
;be sure CF reset
;send TOF char
;save during key input

;see if CR
;get key if not
;else ready to return

;length of filter code

name. This structure is required for all LOOS
5.x filters. The guts of the filter is the
following:

START

OUTP2
OUTCF
OUTPl
KBDl

JR
PUSH
LD
CP
JR
POP
JP
XOR
CALL
PUSH
CALL
POP
CP
JR
POP
XOR
RET

C,OUTP2
AF
A,C
OCH
Z,OUTCF
AF
$-$
A
$-$
DE
@KBD
DE
OOH
NZ,KBDl
AF
A

PAGEPAWS is an output filter. Since input is
flagged when the carry flag is set, the code
starts out by bypassing the form feed test
based on the CF. To be totally correct about
it, the filter should also test explicitly for
the control call which is flagged by a NC, NZ
flag state. Note that the jump and call
vectors denoted by "$-$" were previously
stuffed with the original driver vectors as
obtained from the DCB of the filtered device.

The filter code is straightforward; The flag
state is saved "PUSH AF" to avoid altering the
flag conditions in case the filter should
operate transparently during this character
output. The character under test is obtained
from the C register. If it is not a form feed
(OCH), the original flag state is restored and
the filter jumps to the original DCB driver
address. This action was then totally
transparent to any downstream modules.

The Programmer's Corner - 67 - The Programmer's Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

If a form feed is detected, the flag state is
forced to the state proper for output by the
"XOR A" instruction (Z, NC); of course that
was the state after the "CP OCH" - but then, I
didn't write PAGEPAWS. At OUTPl, the form feed
character is passed downstream by a CALL
instruction; this means the filter regains
control after the formfeed is sent to the
device (assumed printer).

The next short piece polls the keyboard taking
care to save register DE as that is the only
register whose contents are corrupted by an
@KBD call. Once an <ENTER> is pressed, the
filter issues a POP to clean up the stack. It
then clears the flag register and returns to
what called the module. That's it; a short
introduction to filtering. Now let's take a
look at the same filter rewritten for DOS 6.x

OOOA
OOOD
0014
0015
OOOA
oooc
0016
0008
0064
0065
3000
3000 D5
3001 DDEl
3003 216F30
3006 3EOA
3008 EF
3009 3E65
300B EF
300C FDCB025E
3010 CA6330

3013 210000
3016 45
3017 3E64
3019 EF
301A 204B
301C 220C31

301F
3023
3026
3027
3029
302A
302B
302E
3031
3032
3033
3035
3036
3037
3038
3039
303A EB

FD213B31
113A31
B7
ED52
44
4D
FD6EOO
FD6601
7C
BS
280F
SE
23
56
EB
09

00001 ;PGPAWS/FLT
00002 LF EQU
00003 CR EQU
00004 @CHNIO EQU
00005 @ABORT EQU
00006 @DSPLY EQU
00007 @LOGOT EQU
00008 @EXIT EQU
00009 @KBD EQU
00010 @HIGH$ EQU
00011 @FLAGS$ EQU
00012 ORG
00013 BEGIN PUSH
00014 POP
00015 LD
00016 LD
00017 RST
00018 LD
00019 RST
00020 BIT
00021 JP

- Version
10
13
20
21
10
12
22
8
100
101
3000H
DE
IX

6.x

HL,SIGNON
A,@DSPLY
40
A,@FLAGS$
40
3 , (IY +' c ' - ' A')
Z,VIASET

;Move DCB pointer to IX

;Get flags pointer

;System request?

00022 ;*=*=*
00023 install new HIGH$ and move filter code
00024 ;*=*=*
00025
00026
00027
00028
00029
00030
00031 ;*=*=*
00032
00033 ;*=*=*
00034
00035
00036
00037
00038
00039
00040 RLOOP
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050

LD
LD
LD
RST
JR
LD

HL,0
B,L
A,@HIGH$
40
NZ,NOMEM
(OLDHI) ,HL

;get current HIGH$
;Set B=O

;Error if no memory
;put 1n filter header

Relocate internal references in driver

LD
LD
OR
SBC
LD
LD
LD
LD
LD
OR
JR
LD
INC
LD
EX
ADD
EX

IY ,RELTAB
DE,MODEND
A
HL,DE
B,H
C,L
L,(IY)
H, (IY+l)
A,H
L
Z,RXEND
E, (HL)
HL
D, (HL)
DE,HL
HL,BC
DE,HL

;Point to relocation tbl

;Clear carry flag

;Move to BC

;Get address to change

;P/U address

;Offset it

The Programmer's Corner - 68 - The Programmer's Corner

Volume I. iv

303B 72
303C
303D
303E
3040
3042

3044
3048
304B
304E
3050
3051
3053
3054
3055
3059
305c
305F
3062

3063
3066
3067
306A
306C

306F

2B
73
FD23
FD23
18E7

ED5BOC31
213A31
013100
EDB8
EB
3E64
EF
23
0D360046
D07501
D07402
210000
C9

21F430
DD
21D630
3EOC
C31500

OA

30A3 43

30D6 48
30F4 4D

310A
310C
310E

180D
0000
06

THE MISOSYS QUARTERLY - SPRING 1987

·*=*=* ,
,
·*=*=* ,
RXEND

LD
DEC
LD
INC
INC
JR

(HL) ,D
HL
(HL) ,E
IY
IY
RLOOP

Move filter

DE, (OLDHI)
HL,MODEND
BC,LENGTH

;And put back

;Loop till done

;Destination address
;Last byte of module
;length of filter

Volume I. iv

00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082

LD
LD
LD
LDDR
EX
LD
RST
INC
LD
LD
LD
LD
RET

DE,HL
A,@HIGH$
40

;Move new HIGH$ to HL
;Set new HIGH$ into the
;B=O from above

system

·*=*=* ,

HL
(IX+O), 40H. OR. 6
(IX+l),L
(IX+2) ,H
HL,0

;Bump to filter entry
;Stuff TYPE byte

;install addr into deb
;Successfu 1. ••

,
·*=*=* ,

Error message handling

00083

VIASET

NOMEM

LD
DB
LD
LD
JP

SIGNON DB

DB

HL,VIASET$
ODDH
HL,NOMEM$
A,@LOGOT
@ABORT

LF, 'PAGEPAWS - Line Printer Pause Filter -
Version 6.x', 10
'Copyright 1987 MISOSYS, Inc., All rights
reserved' ,LF ,CR
'High memory is not available!',CR
'Must install via SET!' ,CR

00084 NOMEM$ DB
00085 VIASET$ DB
00086 ;*=*=*
00087 , The actual filter
00088 ;*=*=*
00089 PAWSTRT JR
00090 OLDHI DW
00091 DB

START
$-$
6, 'PGPAWS'

;HIGH$ before filtering
;Length of name and name

50 47
0000
0000

50 41 57 53
3115
3117

3119
311B
311C
311E

3120
3122
3124
3126
3128
3129
312B

2005
79
FEOC
280c

ODES
DD2Al531

3El4
EF
DDEl
c9

00092 MODDCB DW
00093 DW
00094
00095 START JR
00096 LD
00097
00098

CP
JR

$-$
0

NZ,CHAIN
A,C
OCH
Z,OUTCF

;Loaded with DCB pointer

;Go if not output

;tof char
;go if so

00099 ;*=*=*
00100 Pass to next filter/driver
00101 ;*=*=*
00102 CHAIN
00103
00104 RXOl
00105
00106
00107
00108

PUSH
LD
EQU
LD
RST
POP
RET

IX
IX, (MODDCB)
$-2
A,@CHNIO
40
IX

;Save current pointer
;P/u this module's DCB

;Chain to the next

The Programmer's Corner - 69 - The Programmer's corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

312C CD2031 00109 OUTCF CALL CHAIN ;send TOF char
312D 00110 RX02 EQU $-2
312F F5 00111 PUSH AF ;Save RET code
3130 D5 00112 PUSH DE ;save during key input
3131 3E08 00113 KBDl LD A,@KBD
3133 EF 00114 RST 40
3134 FEOD 00115 CP OOH ;see if CR
3136 20F9 00116 JR NZ, KBDl ;get key if not
3138 Dl 00117 POP DE
3139 Fl 00118 POP AF
313A C9 00119 MODEND RET

00120
0031 00121 LENGTH EQU $-PAWSTRT ;length of filter code
313B 2431 00122 RELTAB ow RX01,RX02,0

2D31 0000
3000 00123 END BEGIN

Before we dissect this filter, let I s
remember one thing about DOS 6.x. A filter
is installed into memory by the SET
command. This command passes the address of
a spare DCB which has been assigned to the
filter. The FILTER command also inserts
into the DCB, the device name you have
designated and passes the address in
register DE of the DCB assigned to your
filter. The action which the installation
code must take is to relocate the resident
portion of the filter to high (or low)
memory then setup the first three bytes of
the DCB.

The code in the DOS 6.x filter from lines 1
through 16 are pretty obvious. This next
piece pertains to 6.x.

LD
RST

A,@FLAGS$
40

BIT 3,(IY+'C'-'A')
JP Z, VIASET

One of the problems a user could confront
under LOOS 5.1 was that nothing restricted a
filter from being invoked as if it were a
command program. Some folks, for instance,
tried to install the LDOS keyboard driver
simply by typing "KI/DVR". This, of course,
wouldn't work; but the user would get no
indication of failure as the driver really had
no way of knowing that the entry conditions to
the driver (register DE) were incorrect
without some fancy checking. This problem was
eliminated in DOS 6.x by a system flag which
was turned on only by the SET (and SYSTEM
(DRIVER=)) library commands. Thus the test
being performed here is to insure that this
filter was invoked via a command such as

SET *XY PAGEPAWS

It is worth mentioning here that this same

flag convention was added to LOOS 5.3.

Lines 22-30 are similar to the 5.x filter
counterpart; the code obtains the current
value of HIGH$ and pokes it into the resident
filter's module header. Lines 31-56 are new
for this 6.x version filter; however, the
routine is one discussed a long time ago in
the LSI Journal. The routine corrects all
fixed address references in the resident
portion of the filter to reflect the correct
value after the filter is relocated to high
(or low) memory). Thus, the routine won't be
dissected here. On the other hand, the code,

LD
LD
LD
LD
RET

(IX+0),40H.OR.6
(IX+l) ,L
(IX+2) ,H
HL,0

is new for DOS 6.x and is essential for DOS
6.x filter installation. Remember that the job
of the filter installation section is to place
the filter code into memory and set up the
first three bytes of the assigned DCB. At this
point, register IX contains the address of the
DCB assigned. Since the filter is expecting to
be associated with a device which can support
output and control calls (@PUT, @CTL), the DCB
TYPE bit must have bits 1 and 2 turned on.
Also a DCB indicates a filter assignment by
having bit 6 of the DCB TYPE byte turned on.
Here the first instruction does all of that.
The next two place the entry address of the
resident filter into the DCB driver vector
storage area. After that, it's simply
necessary to clear register HL which tells the
DOS that the program successfully executed.
The RET transfers control back to DOS.

PAWSTRT JR START
OLDHI ow $-$

DB 6, 'PGPAWS'

The Programmer's Corner - 70 - The Programmer's Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

MODDCB DW $-$
DW 0

This section of code begins the resident
portion of the filter. The first three
instructions are the same as under LOOS 5.x;
they represent the module header. However,
under DOS 6.x, the module header has been
expanded. The two additional word fields are
used by the DOS for linking between DCB's. The
MODDCB field is loaded by the filter
installation code with the DCB assigned to the
filter by the DOS. Actually, the second word
field is not yet used by the DOS but remains
reserved for future use.

START

CHAIN

RXOl

JR
LD
CP
JR
PUSH
LD
EQU
LD
RST
POP
RET

NZ,CHAIN
A,C
OCH
Z,OUTCF
IX
IX, (MODDCB)
$-2
A,@CHNIO
40
IX

The first four instructions here are similar
to that for LOOS 5.x. Here I corrected the
entry state test. Since @PUT (represented by
Z,NC)is the only condition I want to examine,
I test for this simply by branching directly
to CHAIN on an NZ flag condition. This single
jump is necessary and sufficient since @CTL
and @GET calls each produce and NZ entry
state. The "CHAIN" routine is unique to 6.x.
Under the LDOS 5.x convention, we chain
downstream to the filtered device by CALLing
or JumPing to the address vector which was
originally in the DCB of the device being
filtered. Here, we may take up more code
space, but we gain a consistent interface. It
is necessary to preserve the state of register
IX. Also, the DOS @CHNIO service call sets up
the entry flag state for the next
filter/driver based on the value in register B
(which we have not disturbed). That's why I
don't need to PUSH AF/POP AF here. The key
point is that when we want to pass control to
the device being filtered, we use the protocol
of this "chain" routine. The "RXOl" label is
used by the relocation routine mentioned
above. Since the CALL CHA1N instruction
generates an absolute address reference, it
must be corrected to the new reference needed
when the routine is relocated in memory.

KBDl

PUSH
PUSH
LD

AF
DE
A,@KBD

RST 40
CP ODH
JR NZ,KBDl
POP DE
POP AF

MODEND RET

Finally, we get to the code which polls the
keyboard awaiting an <ENTER> before returning
to the caller. Again we preserve register DE
as that register is corrupted by the @KBD
service call. Under DOS 6.x, all devices
utilize return codes. The convention is that a
"Z" flag state indicates a successfu 1
operation; "NZ" indicates an unsuccessful
operation. This filter preserves the state of
the return code coming back from the @CHNIO
call which passed the form feed character down
the device chain. This return code state,
rather than the result of the keyboard call
and compare for ODH (which would always return
Z), is returned back to the caller. Thus, if
the printer became unavailable during the form
feed, the error status would be seen.

That's it. I don't think that this filter
conversion was excessive; albeit, it was a
simple filter. However, more complex filters
are just built up from simple concepts. So all
of you folks with copies of FILTER DISK 1
and/or FILTER DISK 2 (both of which were
supplied with the full source code) can do
ports to DOS 6.x - or develop some of your own
filters. Send your work in for a future
QUARTERLY!

8086 Assembly Language for Z80 programmers by
Phi lip Oliver

I was recently asked by Roy Soltoff to present
a short introduction to IBM PC assembly
language, somewhat with the intent of
targeting those of you who are already
familiar with the venerable Z80 of the
original TRS-80s. Being the author of both
ED/ASM-86, for the IBM PC, and ENHCOMP, for
the TRS-80 Model 1/3/4, I'm fairly familiar
with both processors. The intent, of course,
is to sspecifically asdress 80x86 code from an
ED/ASM-86 frame of reference! So I've agreed,
and here it is •••

As a short prefix, I'll note that, from the
viewpoint of the programmer, the 8088 and the
8086 are essentially identical, save for
timing. The difference is that the 8088 has an
8 bit external data bus, the 8086 a 16 bit
bus. Furthermore, the 80286, used in the AT,
and even the 32 bit 80386, are currently
operated in modes which essentially make them

The Programmer's Corner - 71 - The Programmer's Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

fast 8086's. This will change over the next
year or two (now 1987). For the time being,
however, there are no widely accepted
operating systems which utilize the full power
of the new instruction sets. Therefore, all
remarks applying to the 8086 apply to the
80286 and 80386 operating in the 8086 mode.

There are three major divisions of comparison
between the TRS-80 line and the IBM PC. First
of all, there's the difference between the
instruction set of the Z80 and the 8086. This
is essentially separate from the individual
hardware the processors happen to be designed
with. The hardware, such as video output and
disk drives, makes up the second category.
Third, and last, is a comparison between the
operating systems of the TRS-80 and the IBM
PC. I'm going to start at the beginning, with
the processor instruction sets, and then lead
on to the "higher level" things such as
hardware and operating systems.

I believe an instructive way to compare two
processors is to look at the following major
categories: the number of registers a
processor has, the flexibility of its
addressing modes, and the amount of memory
directly addressable. Generally, the more
registers a processor possesses, and the
bigger (number of bits) they are, the faster
it is. Similarly, the addressing modes
available will determine how hard it is (how
many instructions it takes) to accomplish a
particular data movement. And the amount of
memory addressable by the processor determines
the possible size of programs (and data) which
may effectively be used with it.

I. A Comparison of Instruction Sets

First, a look at the Z80. The Z80 has the
following registers: A, B, C, D, E, H, L, IX,
IY, and SP [Editor note: two additional
registers, I and R are special purpose
registers which are not usually dealt with by
the applications programmer]. The single
letter registers are 8 bits wide; IX, IY, and
SP are 16 bits. Additionally, certain
combinations -- BC, DE, and HL of 8 bit
registers may be treated as one 16 bit
register. The two letters of the 16 bit
register name corresponds to the simple
concatenation of the two 8 bit registers
involved; HL, for example, is made up of
registers "H" and "L 11

•

The addressing modes of the Z80 are not
symmetrical; that is, certain operations may
use only certain registers, and not others.
One example, common to most processors, is the

exclusive use of SP for stack oriented
operations, such as PUSH, POP, and CALL.

Also, most arithmetic operations are oriented
for use with the "accunru la tor", or "A"
register, or the HL register pair. You cannot,
for example, directly add 115" to the "C"
register.

Memory transfers are also oriented primarily
for use with HL, IX, and IY. The latter two
registers, IX and IY, provide the most
versatile memory addressing modes of the Z80.
Any 8 bit value or register can be loaded or
stored to memory, with an optional offset from
the base register value supplied.

For the most part, the Z80 can be described as
an "8 bit" processor. Although certain 16 bit
operations are supported, such as addition of
a 16 bit register pair to HL, or the loading
and storing of 16 bit registers to/from
memory, most instructions of the Z80 deal with
8 bits at a time.

Furthermore, there is an upper limit of 64K of
memory directly addressable to the Z80. This
is due to its 16 bit address bus. This imposes
a restrictive limit on the sophistication and
size of the programs which may readily be run
on a Z80 based computer.

Now to look at the registers of the 8086 and
compare them with the Z80. First of all, the
8086 has the following 8 bit registers: AL,
AH, BL, BH, CL, CH, DL, DH [Editor's note:
notice the similarity in quantity and
correspondance of 8-bit registers between the
Z80 and 8086]. Additionally, there are the 16
bit registers: BP, DI, SI, SP, CS, DS, ES, SS.

As with the Z80, certain pairs of 8 bit
registers may be treated by some instructions
as a single 16 bit register. Thus, AL and AH
combine to form AX; and similarly with the
other 8 bit registers, to~form BX, CX, and DX.
There is no convenient way, however, to "break
apart" the other registers, such as SI, into
upper and lower 8 bit pairs.

As with the Z80, addressing modes on the 8086
are not symmetrical. However, they are
generally more flexible than the Z80. For
example, there is less bias in using the
accunrulator, which is the AX register in the
8086, over the other registers. For example:

SUB CL, 5

is a valid instruction, which subtracts 5 from
the CL register. Note, at this point, that the

The Programmer's Corner - 72 - The Programmer's Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

8086 follows the same convention as the Z80 is
terms of the position of source and
destination operands. The familar Z80
arithmetic instructions which specify only one
operand, implicitly specifying the accumulator
as the other operand, are not supported in the
8086. For example, the Z80 instruction:

ADD 7

would be analogous to the 8086 instruction:

ADD AL,7

where you must explicitly specify "AL", since
"BL", "CL", etc. can be specified as well.
Note that the use of AL and AX is generally
more efficient than using other registers; one
byte rather than two is needed for the opcode.

The 8086 does support a wider range of
addressing modes than the Z80. The "BP", "BX",
"DI'i, and "SI" registers may be combined (with
restrictions) to form a memory address for
most instructions that access memory. For
example:

MOV AL, [BX+DI]

would load the "AL" 8 bit register, or the
lower half of "AX", from the byte located at
the address formed by BX+DI. I won't give an
exhaustive list of all the valid combinations
here; but remember that they are limited. For
example, [SI+DI] is NOT a valid addressing
mode. In general, "SI" and "DI" are treated as
"index" registers, and "BX" and "BP" are
treated as "base" registers. A "base" plus a
"base" is not allowed, nor is an index plus an
index. Nor are combinations of more than 2
registers allowed. You may specify either an 8
or 16 bit signed offset, akin to the Z80
(IX/IY+disp8), in any of the addressing modes.

Note that the
data movement
Z80' s "LD".

general 8086
is "MOV", as

opcode name for
opposed to the

The 8086 is probably best thought of
bit processor. Most instructions can
16 bits at a time, and the external
of the 8086 is 16 bits wide.

as a 16
deal with
data path

It would appear, on the surface, that the 8086
is a 16 bit processor in terms of memory
addressing as well. After all, the maximum
register size is 16 bits long, right?

Here we get into the most complicated and
vexing aspect of the 8086 family. This is
known as "segmentation". Note the registers

listed above that haven't been mentioned yet:
CS, OS, ES, and SS.

The 8086 address bus is not 16 bits, but is
actually 20 bits wide. This means that it can
address 2A20, or about a megabyte, of memory.
This is 16 times the memory capacity of the
Z80 and this means that more sophisticated
programs (or, at least, bigger ones!) can be
run on the 8086. The natural question at this
point, is how this somewhat odd number, not an
even power of 2, is supported by the
addressing modes of the 8086. The answer is
relatively simple. The 8086 actually forms all
physical memory addresses by the following
formula:

(16 * segment register)+ offset

"Segment register" means any of CS,DS,ES, or
SS. Offset is what is conventionally thought
of as the memory address, and is 16 bits wide.
In hexadecimal, this can more easily be
visualized as:

s s s s 0
+ 0 0 0 0

A A A A A (20 bit physical address)

The convention for specifying a full address
is: SEGMENT:OFFSET. That is, the segment
value, followed by a colon, followed by the
offset.

The 8086 decides which segment registers to
use based on the context of the instruction.
When fetching instructions, for example, the
CS, or "code segment" (clever acronym, eh?),
is used, in conjunction with the internal,
conventional, PC, which represents the offset.
Thus "CS:PC" would denote the full 20 bit
address of the currently executing
instruction.

Data accesses usually
segment", register,
example given earlier:

use the OS,
implicitly.

or "data
Thus the

actually
location
times the

MOV AL,[BX+DI]

means load "AL" from the memory
specified by "OS: [BX+DI]", or 16
OS register value, plus BX, plus DI.

The SS register combines with SP to form the
stack address. Note that addressing modes
involving "BP" use SS, not OS, as the segment.
This is due to the fact that BP is designed to
access local procedure variables allocated on
the stack. ES is a "spare".

The Programmer's Corner - 73 - The Programmer' s Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

It is generally possible, for MOV
instructions, to "override" the default
segment value. In this case, the "SEG segreg"
instruction is used; or the segment name can
be directly given, as with:

MOV DS: [BP+DI+l2H] ,SI

Rather than using the stack segment (by
default), the DS, or data segment, would be
used instead. Note that segment overrides only
last for the following instruction.

One of the amusing (?) implications of
segmentation is the fact that there are 64K
ways of specifying exactly the same physical
memory location, using 64K different
combinations of segments and offsets
(arithmetic overflow allowing).

Another implication is that is it difficult,
time consuming, and annoying to attempt to
deal with more than 64k of memory at a time
with the 8086, due to segmentation. This is
because there are no arithmetic instructions
which operate directly on the segment
registers, and no way to add a "20 bit"
address directly to a segment register/offset
register combination. The main reason for this
mickey-mouse scheme is that Intel designers
basically didn't want to have to deal with the
issue of extending an 8 bit processor, the
8080, and so just slapped in a few extra
registers with minimal instructions for
dealing with them.

ED/ASM-86 manages segments in the following
manner. If all the program code and data can
live in the confines of one segment, or 64k,
then life is easy. ED/ASM-86 will handle the
overhead for you, transparently. Otherwise,
you will have to define multiple segments in
the following manner:

segname SEGMENT PARA 'class'
(your code or data
definitions go here)

segname ENDS

You will define one segment per segment you
need. Usually, for multiply segmented
programs, there are at least three segments: A
code segment, a data segment, and a stack
segment. MSDOS defines two executable file
types: .COM and .EXE. The former are limited
to 64k, though not necessarily one segment
(ED/ASM-86 can actually generate multiply
segmented programs and output a .COM file,
unlike MASM.) The latter, the .EXE file, is
designed for larger programs, and can support
the 640k limit imposed by MSDOS.

Segmentation affects all aspects of data moves
and program branching statements, For example,
there are two basic types of jumps and
subroutine calls in the 8086; inter-segment
and intra-segment.

As the names imply, inter-segment jumps and
calls jump between segments, They are so
called "far" references. These require 32 bits
of information, the segment and offset of the
target routine. Since these are long and slow,
programmers try to avoid them.

Far more common is the intra-segment, or near,
jump or call. These require from 8 to 16 bits
of displacement information. It is interesting
to note that inter-segment references specify
an absolute address, whereas the intra-segment
branches or calls are PC relative. This makes
it impossible to directly search for
instructions jumping or calling a specific
address.

The Z80 has one useful feature lacking in the
8086: 16 bit conditional jumps. For example:

JP NZ,target

branches to "target", a 16 bit address, on the
non-zero condition. Amazingly, there is no
conditional 16 bit jump in the 8086; only
conditional 8 bit jumps or branches.
Furthermore, the 8086 lacks a conditional
CALL. To synthesize these extremely useful
instructions, I developed a set of macros,
included with ED/ASM-86, to simulate them
using the 8 bit conditional branches.

The Z80 supports block move and block byte
search with the instructions LDIR/LDDR and
CPIR/CPDR. The 8086 has similar instructions;
REP MOVSB and REP CMPSB. In the Z80, there are
separate instructions to perform incremental
block moves (LDIR) and compares (CPIR), and
decremental (LDDR and CPIR); in the 8086, a
processor flag (the direction flag) indicates
the direction of the move/compare. The "CLD"
instruction clears the flag and specifies a
decrement; "STD" sets the flag and specifies
increment.

To set up a block move with the Z80, you load
the HL register with the address of the source
block, DE with the destination block, and BC
with the move count. Then, LDIR or LDDR
performs the move:

LD HL, SOURCE
LD DE,DEST
LD BC,COUNT

The Programmer's Corner - 74 - The Programmer's Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

LDIR (or LDDR)

The 8086 operation is very similar; the SI
register is loaded with the source offset, DI
with the destination offset. The CX register
contains the move count. The segment register
used for the source is DS; the destination
segment is contained in ES. In other words,
source= DS:SI, destination= ES:DI. Thus:

(appropriate setup
of DS and ES values)

MOV
MOV
MOV
CLD
REP

SI,OFFSET SOURCE
DI,OFFSET DEST
BX,COUNT
(or STD for decrement)
MOVSB

Actually, "REP" and "MOVSB" are two separate
8086 instruct ions. "MOVSB" specifies a single
byte transfer between DS:SI and ES:DI,
incrementing or decrementing SI and DI
depending on the transfer flag value. The
"REP" prefix indicates that the operation is
to be repeated "CX" times.

You can also move 16 bits, or a word, of data,
at a time with the MOVSW instruction. This
ability to move either 8 or 16 bits is common
to most of the MOV instructions.

Note the use of the "OFFSET" operator. This
means that the "offset" value (what in Z80
terms would be the PC value of the symbol) is
used, rather than the contents of the memory
location specified by the symbol. The MASM
convention is to assume the reference is
indirect; the ED/ASM-86 convention assumes the
reference is direct, that is, OFFSET 1s
implicitly specified.

This brings up the issue of "typed symbols" or
"variables". It is possible to define, say, a

instruction generated. So:

MOV AX,WVAR

would, ifXYZ had been defined as above,
generate the instruction to move the contents
of WVAR into AX. Otherwise, according to
ED/ASM-86 convention, it would move the offset
of WVAR into AX. Note that:

MOV AX,OFFSET WVAR

would unconditionally generate a direct load
of the offset of WVAR into AX, regardless of
the type of WVAR, with ED/ASM-86. Similarly:

MOV AX, [WVAR]

would unconditionally generate an indirect
load of the contents of WVAR into AX,
regardless of the type of WVAR, again using
ED/ASM-86 conventions, which are that bracket
characters always specify an indirect
reference. Note, however, that if WVAR has
been typed, then it must match the size of the
register. For example:

MOV AL, [WVAR]

would generate an error, because WVAR was
typed as a word, and AL is a byte sized
register. This could actually be overridden,
if required, by:

MOV AL, [OFFSET WVAR]

The Z80 contains I/0 ports which are separate
from the main memory. So does the 8086, which
has 65536 addressable ports versus the Z80' s
256. The general form of the 8086 port output
instruction is:

OUT DX,AL

byte variable in the following way: or

XYZ DB 0

or a word:

WVAR DW 0

Obviously "DB" denotes a define byte
operation, "DW" a define word. Unlike Z80
symbols, when a symbol is defined immediately
prior to a "DB" or "DW", it is typed to that
definition. "XYZ" in the above example then is
typed as a byte variable, and "WVAR" is typed
as a word. Essentially, this information can
be used, if the symbol has been previously
defined on pass 1, to specify the type of

OUT DX,AX

which uses the contents of the DX register to
specify the port. For port addresses less than
256, a direct form may be used:

OUT portnum,AL (or AX)

And of course, inputs from a port are allowed
as well. The syntax is the reverse of OUT's.

II. Comparison of Hardware & Peripherals

Both the IBM PC and the TRS-80 have certain

The Programmer's Corner - 75 - The Programmer's Corner

I~

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

hardware standards, such as types of video
adaptors, etc.

There is far more add on hardware available
for the IBM PC than was ever available for the
TRS-80. Aside from the popularity of the IBM
PC, the reason for this is the expandibility
of the PC, with its internal slots. Therefore,
it would be impossible to fully cover the
possible options. However, there are certain
more or less standard hardware configurations.

The TRS-80 has supported only one type of
video adaptor, primarily because all TRS-80s
have had them built into the standard
hardware; although there have been some "high
resolution" add ons available.

The PC has at least 3 "standard" types of
video output, all addressed in a standard way.
These are the monochrome adaptor; the Color
Graphics Adaptor (or CGA); and the Enhanced
Graphics Adaptor (or EGA).

The monochrome and CGA adaptors are controlled
by the MC6845 video controller chip [Editor's
note: The MC6845 is the same type of video
controller chip found in your TRS-80 Model III
and 4]. Various display parameters are
controllable by on-chip registers, which are
addressed at standard 1/0 port locations.

Similarly, the display memory resides at
standard locations. The start of monochrome
display memory is 0B000:0, and CGA memory is
at 0B800:0. The standard setup is an 80 by 25
line screen, with two bytes specifying one
displayed character. One byte is the ASCII
code of the character to be displayed, the
other is a so-called attribute byte. Depending
on the mode enabled, this can specify whether
the character is to be blinking, dim, etc. The
adaptors conventionally have 16k on board; it
is possible to have 4 separate "screens" in
memory at once in alphanumeric mode.

The CGA can also support graphics. The
conventionally supported modes are 320x200 in
either B&W or 4 colors; and 640x200, B&W.

The EGA is much more complicated, although it
can emulate CGA mode. In one enhanced mode,
640x350 resolution in 16 colors is possible.
;sk There are standard 1/0 port addresses for
accessing serial and parallel ports; the
standard serial 1/0 chip is the INS8250. The
PC also has DMA [Direct Memory Addressing]
controller chips and timers, as well as a
built in speaker with limited capability.
Details are beyond the scope of this article.

As far as disk drives go, the conventional
5.25" floppy disk is a 40 track, double sided,
double density drive with a 360K capacity.
Hard disk sizes vary dramatically; but it's
now possible to get 20 meg drives with a
controller for around $400. Ten meg drives are
a thing of the past. You can get off the shelf
hard drives up to 120 megabytes and beyond.

III. Comparison of Operating Systems

The PC, as well as the TRS-80, has a more or
less standard boot rom, or "BIOS" as it is
called, which contains various useful low
level routines for doing 1/0. For example,
although it possible to directly control the
video hardware yourself, and there are
definite speed gains in doing so, the short
and simple way to print things out is to use a
BIOS call to do it for you.

Essentially, a BIOS routine is called with a
useful, short 8086 instruction called "INT".
The INT instruction is analogous to the Z80's
RST instruction, although the 8086 supports
256 possible INTs compared to Z80's meager 8.
INT is basically a short, position independent
form of the inter-segment far CALL.

The lower numbered INTs are reserved for BIOS
call usage. For example, INT 10H (note that
'H' after a number means hexadecimal) supports
the video adaptors. For example, to do a
simple "teletype-like" character print on the
screen:

MOV AH, 14
MOV AL,char
MOV BL,foreground color
MOV BH,display page#
INT 10H

And there are various other routines which set
up serial communications, send a byte to a
printer, do disk I/O, and so forth. All of
these are completely standardized in terms of
the INT# involved and the registers used for
parameters; with the possible exception of
certain limited extensions for non-standard
hardware. The IBM BIOS technical reference
manual describes all of them in detail, as do
many other reference sources.

The TRS-80 has (had) a long line of varying
disk operating systems. One of the first was
"NEWDOS"; and of course LDOS.

Somewhat strangely,
real competitor to
operating system for
MSDOS has its roots

there has never been a
MSDOS. It is the standard

the IBM PC. Essentially,
in a cheap CP/M clone

The Programmer's Corner - 76 - The Programmer's Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

hacked up at some time, and purchased by
Microsoft and cleaned up a bit. As with the
BIOS, MSDOS contains its own set of system
calls which are accessible to application
programs. Most of these calls are accessed via
the INT 21H instruction; the AH register is
loaded with a function code, along with other
pertinent registers, as entry parameters.
Various utilities such as file access are
supported by MSDOS.

IV. Cone lus ion

The future of the IBM PC world is hazy at this
point (as is the rest of the future!) With the
introduction of their new machines, IBM has
essentially said "to hell with existing
hardware and eventually existing software".
This move seems to be motivated primarily by a
desire to squelch competition from the clone
makers.

This is leading to divergent pathways. On the
one path will be the millions of IBM PC clones
which will almost surely continue to be
manufactured like popcorn, with the attendent
low prices. On the other will be IBM, aiming
at the corporate markets who want 3270
terminal capabilities and the Blue label. What
this holds in store as far as the operating
system goes is anyone's guess.

The 386 based machines will become more

popular, and cheaper. But here, there are no
set standards, either hardware or software.
Microsoft has indicated that a 386 operating
system is at least two years away -- probably
more considering their usual schedules. What
will the market be? There are indications that
UNIX will become a popular OS for the 386. I
do intend to start doing development with the
386. If so, then ED/ASM-86 will, as it has for
the past 2-3 years, continually evolve to a
new and better lifeform.

In any case, regardless of the way the
hardware and operating systems work out, 8086
assembly language will be a common denominator
of everything from IBM PC clones to 386
powerhouses. At least until a truly nice
processor like the 68020 is widely accepted
(grin).

My next article, if/when there is to be one
(depending on the readers' attitude towards
this one), will concentrate specifically on
using ED/ASM-86 to get acquainted with 8086
assembly language. I intend to use this
article as a base for the next, presuming a
little bit of familiarity next time.

[Editor's note: You may address these 80x86
and ED/ASM-86 isses with Phil on our
Compuserve forum, PCS-49. Philo's PPN is
72437, 2057.]

The Programmer's Cor.ner - 77 - The Programmer's Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Product Tidbits
ALTRES (part of PRO-ESP)

(Fm: Paul Bradshaw) After a little digging, I
have found the patch areas that allow the
ALTRES/CMD program (from your PRO-ESP package)
to be moved around from Bank 2. This specific
patch modifies ALTRES to use bank 4, but it
may be modified to select any bank available.
This makes it possible to move ALTRES out of
the way for those who have the Alpha Tech or
XLR8er boards (leaving banks 1 and 2 free for
applications that MUST use one of those
banks). See ALTBANK/FIX by Paul M. Bradshaw
in The Patch Corner.

Assemblers - PRO-CREATE

(Fm: Clay S. Scott) While reading throught THE
PROGRAMMER'S GUIDE TO TRSDOS6 and other source
listings, I have noticed the frequent use of
the expression ($-$) as operand in source
statements as "LD HL,$-$", "DW $-$", etc.
Since it appears that this expression will
always evaluate to zero, I wonder why it is
used in lieu of the constant value zero. I own
PRO-CREATE Ver. IV and would appreciate an
explanation for this practice.

(Fm: MISOSYS) It has become common practice to
use the "$-$" nomenclature when coding a word
space which is to be subsequently altered
during runtime. Thus a quickie look at the
source code gives you the knowledge of the
dynamics of the code; if you use the technique
consistently.

DED86 - MS-DOS based disk editor

(Fm: Jim Gaffney) I received DED86 today and
I'm impressed! It's all that I anticipated it
might be and more. I particularly like the
documentation and having the foldout pages to
illustrate the displays while you read the
docs sans a computer is a masterstroke.

I assume from the docs that
problem with the DEMODED.EXE
the bulletin board circuit?
file.)

DSM - Disk Sort and Merge

you would have no
being uploaded to

(Not the OED.EXE

Earl Jamison gave us a brief report that DSM4
aborts a Job Control Language file at the
conclusion of processing. That's the Model 4

version. Bill Norman gave us a similar report
concerning DSM51 (Model III version). Bill's
report was that if you invoke a DSM51 MAP run
from LBASIC (5.1.4) via a CMD"DO ••• ", when it
gets back to LBASIC, the program which invoked
the CMD"DO aborts. Because of two similar
reports, I thought it best to go over the
documentation and evaluate the two reports.

In my DSM4 test, I sorted a 1200 record file
of 128 byte records. The JCL file was:

• this is a test of dsm4 via jcl
dsm4 usermap jcl
s
n
userclub/idx: 2
a
2
• this is the jcl continued

I experienced absolutely no problems with this
procedure. If anyone has difficulty using DSM4
from JCL, you must send me complete details. I
will need a copy of your data file. I will
also need your MAP file, your JCL file, and
specific details concerning all of the
responses you made to the DSM4 module which
generated that MAP file. Please provide all of
the files on a floppy disk.

I also investigated the report of DSM51
aborting the running BASIC program which
invoked a sort job via Job Control Language
and BASIC's CMD"DO commandstring". In my test,
I sorted a 1200 record file of 128 byte
records. My test BASIC program was:

10 PRINT "Here before invoking DSM"
20 CMD"DO = TESTDSM"
30 PRINT "Here after sorting"
40 END

The JCL file was:

• this is a test of dsmSl via jcl
dsm51 userclub/map:4 (jcl)
userc lub/ idx: 4
a
4
• this is the jcl continued

I experienced absolutely no problems with this
procedure. If anyone has difficulty using
DSM51 with JCL from BASIC, you must send me
complete details. I will need a copy of your
data file, a copy of your BASIC test program
which demonstrates your DO invocation and
abort after return (please slim down your
program to the bare essentials neccessary to
reconstruct the error). I will also need your

MISOSYS Products' Tidbits - 78 - MISOSYS Products' Tidbits

Volume I. iv THE MIS0SYS QUARTERLY_- SPRING 1987 Volume I. iv

MAP file, your JCL file, and specific details
concerning all of the responses you made to
the DSM51 module which generated that MAP
file. Please provide all of the files on a
floppy disk.

ED/ASM-86™ 80x86 assembler

(Fm: MIS0SYS) I have made arrangements for
Phil Oliver, the author of our ED/ASM-86
assembler product, to check into our
Compuserve forum more frequently than he has
in the past. So if you have any questions
concerning ED/ASM-86 or 80x86 assembly
language, please leave a message for our
"expert". Phil's PPN is 72437, 2057.

(Fm: Bob Haynes) Will be getting into MSDOS
assembly in the near future and am interested
in your ED/ASM-86 and DED86 packages. Forgive
my ignorance of 16 bitters, but here's a
couple of questions: Will a DSMBLR-86 also
become available? Do these packages run on any
MSDOS system? What sort of compatiblity
exists in the 8086/8088/80x86 instruction
sets, and how do your packages fit in as a
broad range development package? I'd really
like to have the same kind of professional
software under that environment as on the Z80.

(Fm: MIS0SYS) DSMBLR-86 will most likely not
be done. ED/ASM-86 includes a memory
disassembler which generates labels.
Considering that the debug portion can load an
EXE file, what more do you need?. All of the
••• 86 packages run on an MS or PC DOS machine.
Some (like FED86) require a "true" compatible.
DED86 includes a version for the T2K.
Compatibility in the 8086 ••• instruction sets?
Do you mean compatible across them or
compatible with Z80? DED86 is for everybody.
Just like everybody using a TRS-80 needs a
good "disk zapper". Obviously, ED/ASM-86 is
only for a programmer. It's architecture is
perfectly suited for those folks wanting to
learn 80x86 assembly language since it
combines the editor, assembler, linker,
debugger, and disassembler into one memory
resident file.

ED/ASM-86 questions #1

(Fm: Nate Salsbury) Roy - this is sent to you
from the bottom of my learning curve! To gain
some experience, I tried reproducing Hardin's
tutorial "Listing 3" in the June, '87 issue of
'80 Micro', page 44.

After a LOT of cut and try, I ended with a
program that would assemble into memory
without error. My stickiest problem (e.g. it
took the longest to "cure" - by brute force,
NOT reason!) was when the 'wrt ln' procedure
was assembled. It produced ttsymbol value
difference between passes" for wrt ln, and
wrt 1 as well as mov_curs and wait_key.

This problem "went away" by changing
second line of code in wrt ln from

mov bl,attrib

to

mov bl,[attrib]

the

(As an old Z80 man, that was what I was
inclined to do but your manual says on p. 47:
"If a symbol has been defined ••• then an
indirect reference will be assembled whenever
the symbol is referenced." This confusing (to
me) system is what MASM does as shown in
Hardin's listing.)

In the third-from-last line of code in the
same module, I had to revise it to

mov [attrib] ,bl

and the next line had to be changed to

inc byte ptr ere row

before I could get a "good II assembly. Oh, also
in the set curs procedure I had to use

mov dh,[curs_row]

Are these truly differences in design between
MASM and ED/ASM-86? From the sentence in your
manual which I quoted earlier, I had expected
ED/ASM-86 to work the SAME way as MASM.

(Fm: MISOSYS) Nate, in investigating your
report, I found that your quote from the
ED/ASM-86 manual was missing a VERY IMPORTANT
WORD. You should have quoted, "If a symbol has
been previously defined immediately before the
DB, DW, ••• , then an indirect reference will
be assembled unless overridden." You left out
the word "previously". Now in Hardin's listing
3, the symbols CRS ROW and ATTRIB are defined
in a DATA segment -which is placed after the
CODE segment in the source. Since that is not
"previously", I must assume that the assembler
did not treat the non-bracketed references as
indirect. Just for the heck of it, I moved
that DATA segment block to precede the CODE

MISOSYS Products' Tidbits - 79 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

segment and re-assembled. Didn't get any
errors. I'm not sure what MASM does in
handling references to symbols not yet
defined. If MASM doesn't generate an error,
then I guess it defaults to always assuming an
indirect refference unless OFFSET symbol is
specified. That may be arbitrary to an
assember's implementation. My suggestion is to
always use the brackets to indicate
indirection to the observer of the source
code. In that way, you know what is the case.

EnhComp BASIC Compiler

(Fm: Clyde W. Preble) Received PRO-EnhComp in
good condition and have converted several of
my BASIC files. However, when I first tried to
convert the "Russian Roulette" game, I got
error conditions in lines 280 and 305 [280
PRINT"CLICK": SOUND O, 0 and 305 SOUND O, 2].

When I deleted 'SOUND 0,0' in line 280 and
'SOUND 0,2' in line 305 the program converted
correctly and works all okay except the SOUND,
of course, is absent.

When I tried to transfer EnhComp to TRSDOS 1.3
I got errors which showed that the files were
not converted and were listed as protected
files which as far as I can determine are not
protected. The disk I formatted for the
conversion formatted correctly and the four
EnhComp files transferred correctly before I
tried to convert the disk to TRSDOS 1.3, and
the TRSDOS 1,3 disk had ample granules
available.

(Fm: MISOSYS) Here's some answers for your
EnhComp questions. EnhComp does not support
any "SOUND" statement. It's not listed in the
manual. On the other hand, a little COMMAND
addition in Z80-MODE should allow you to adapt
that Russian Roulette program very easily.
Here's a little code which adds a SOUND
statement and demonstrates its use:

DEFINT A-Z
FOR D=O TO 4
FORT= 0 TO 7
%SOUND(T ,D)
NEXT T,D
STOP
COMMAND SOUND(TONE,DUR)
Z80--MODE
LD A,(&(TONE)):AND 7:LD B,A
LD A,7:SUB B:LD B,A
LD A,(&(DUR)):AND 31
RLCA:RLCA:RLCA:OR B:LD B,A
LD A,104:RST 40:RET

HIGH-MODE
ENDCOM

You would need to include the code verbatim
from "COMMAND SOUND(TONE, DUR)" through to
"ENDCOM". A statement such as the fourth line
will beep the requested sound. Although this
syntax 'SOUND(tone,duration)' is a little
different from 'SOUND tone,duration' in
Microsoft's BASIC, it's a straightforward
conversion.

For our other readers, this is another example
of the ease in which an assembly language
routine can be integrated into your BASIC
programs without USR, CALL, or packed strings.

None of the EnhComp files are protected. The
Model III EnhComp comes supplied on a stripped
down LOOS 5.1.4 disk. To transfer the files
over to TRSDOS 1.3 (if you really want to),
FORMAT a 35-track Single Density disk using
LOOS. Then copy the BC, CED, S, and REF "/CMD"
files and the SUPPORT/DAT file over to that
35-track disk. You should have no problem in
using TRSDOS 1.3's CONVERT utility.

(Fm: Bob Connors) Was just using EnhComp with
LOOS 5.3.0M and came across an interesting
fact. It appears that when using the FORMS
command with PR/FLT installed, if I specify
only one parameter on the command line, FORMS
resets all the other parameters to their
DEFAULT (and no, DEFAUT is not specified on
the command line). Is this the way it should
work? Could it be that the default for DEFAULT
in FORMS is set to ON for the MAX-80?

Also, why isn't EnhComp set up to use the
PR/FLT. I have PR/FLT set up as follows
(parameters): P=66,L=57,M=5,C=75,T,F). While
EnhComp will use the margin setting (and I
assume number of characters on a line), it
does not abide by the lines per page or the
hard top of form code. Instead, it uses
(apparently) its own internal printer routine.
Line feeds for TOF are most annoying! Is there
anyway to get EnhComp to use the system
configuration at least as far as the printer
routine is concerned?

(Fm: MISOSYS) That's the way
didn't realize that TRSDOS 1.3

it works. I
has a PR/FLT.

That's what it would take to have EnhComp use
it. Although I would certainly like to see
LOOS as the standard DOS for the Model III, it
just ain't so. Thus, EnhComp was not written
to use the LOOS PR/FLT formatting. That's the
real world. I don't think there is a way to

MISOSYS Products' Tidbits - 80 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

get EnhComp to use the LDOS PR parameters
short of writing a library function in Z80-
MODE to accomplish that. Perhaps this message
will tickle me to post the internal-to-EnhComp
storage names which pertain to the print
formating (I assume you are referring to
compiled stuff).

Here goes for the internal variables:

@@PAGELEN
@@LINE SP AGE
@@LMARGIN
@@RMARGIN
@LINESP

- page length
- printed lines per page
- left hand margin
- right hand margin
- internal line counter

Now the left/right margins can be set with
BASIC commands LMARGIN and RMARGIN; LINESPAGE
will set the printed lines per page; and
PAGELEN changes the first value. This means
that you really don't need to twiddle with any
of those variables at the assembly language
level unless you want to poke the number of
lines already printed.

· (Fm: Bob Connors) What I was referring to was
the use of the "H" command of CED. I have the
PR/FLT parameters set and CED does not
recognize them at all. Instead of getting the
hard formfeed after 57 lines, I get that, then
I also get the formfeed (aka line feeds) from
CED when it apparently prints 60(?) lines.
This tends to throw off my listings pretty
much. However, if it cannot be fixed (since it
ain't broke), then I guess I will have to live
with it! Wish there was someway to change the
number of printed lines per page though,
similar to the way EDAS does it, as well as
the margin (although CED does honor the PR/FLT
margin setting).

(Fm: MISOSYS) CED does not "honor" the PR/FLT
margin setting; since it uses @PRT, the PR/FLT
still is doing its thing. I made reference to
TRSDOS 1.3 since EnhComp (that same version)
works with Tandy's DOS, as well. EnhComp does
not attempt to detect what DOS it is running
on so it could check to see if PR/FLT is in
use and then use those parms. In fact, if it
did do that, it would then be incompatible
with 5.3! And then I would not be changing it,
either. My best suggestion would be to give
you zapping instructions to the SUPPORT/DAT
library to totally deactivate EnhComp's print
formatting; but I really doubt that that is
what you want.

(Fm: Bob Connors) Roy, I have been working on
the following code for 4 days. Reason: it will
not compile. This is a stripped down version
of the code (all REM statements removed) so
that I can fit it into this message. When
trying to compile using the "RUN" command
from CED (invoked by "S"), I get an error
message, "Source file not in directory." When
using the command line "BC RECEIVE/BAS,,,-WE
NO" from LDOS, "Pass 1F l" displays two times
and the system dies. I have checked the syntax
over and over and cannot find any errors. Do
I have a defective compiler? I have applied
all patches to the EnhComp package through TMQ
I.iii. By the way, with the REM statements
included, the system just dies no matter how
the compiler is invoked. My EnhComp serial
number is 00027 and the errors occur under
both LODS 5.3.0M and LDOS5.l.4M. Thanks for
your help. Code follows. [trimmed down to the
bare essentials -ed]

IF CHAR=&H8 THEN
IF COUNT)O THEN

DEC COUNT:POKE POSITION+COUNT,32
GO SUB "OUTB YTE 11

GOTO "GETKEY"
ELSE

GOTO "GETKEY"
ENDIF

ENDIF PADSTOVV N.S.11J 2211

(Fm: MISOSYS) There were 5 lines in the
program which were causing EnhComp to crash.
Each was of the form, "IF expression THEN".
The syntax of "IF" is either "IF exp" or "IF
exp THEN action". Of course, EnhComp should
not crash. Patches BC53/FIX and BC63/FIX to
BC/CMD which change compilation from a crash
to a displayed "Syntax error" message are in
The Patch Corner. After applying the patch,
you will "correctly" get a syntax error.

(Fm: Bob Connors) I assume (here I go again,
assuming) that the culprit is the first "THEN"
of each IF statement shown? So instead of "IF
exp THEN IF exp ••• 11 I should have "IF exp IF
exp THEN. • • ELSE •••• ", is that correct?

(Fm: MISOSYS) That's sort of correct. If you
look at page 4-50 of the manual, you will see
that the IF statement has two forms. You were
trying to use a combination of both of them.
"IF cond progcode ELSE progcode ENDIF" is one
of the forms. "IF cond THEN act ion ELSE
action" is another. You can't have "IF cond
THEN IF ••• " since the second IF starts a new
statement. That doesn't match either of the
acceptable forms. The compiler didn't check

MISOSYS Products' Tidbits - 81 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

for the absence of an "action" once it
detected the "THEN". Use of the "THEN"
required an action because the compiler didn't
trap the error. It would be wrong to just
forget the "syntax error" (I could have done
it that way in the patch); it would be wrong
since the omission of an action after the THEN
violated the two forms of the IF. Got it?

(Fm: Richard C. Baker) I recently purchased
your PRO-EnhComp BASIC compiler. So far I have
found it totally misrepresented. I ordered it
on the basis of a glowing review in Micro 80
magazine.

is your manual.
not an advanced
get practically

The biggest criticism I have
It explains very little. I am
BASIC programmer but I can
nothing reading your manual.
uselessly simplistic. These

The examples are
should show all

major possible variations of function uses, as
the TRS BASIC manual does.

What I would most like to understand is: just
what is the procedure for compiling existing
programs written in TRS Model 4 BASIC. I have
tried several of my programs which run very
well with the interpreter but will not compile
by EnhComp without a multitude of errors. And
I can not discern what the errors are. Most of
them are listed as 138 and 139. But try as I
might I can not figure out what is wrong or
how to fix them to work.

Also, I would like examples showing the use of
the "USING" function in a working program. I
have tried every way I can but this function
will just not work. Even your examples won't
work. Nor will any but the very simplest
versions of "PRINT USING". But what about
printing variables? My programs need to print
several variables of all different formats on
the same line. This has to be in a loop
processing lots of different numerical values
and strings.

(Fm: MISOSYS) Nothing in our advertising or in
our catalog states that PRO-EnhComp will
compile a program written to run under
Microsoft's BASIC Interpreter used on the
Model 4. There is no commonality amongst
BASICs; each implementation may include more
or less than some other manufacturer's
interpreter or compiler.

Your third paragraph suggested that EnhComp
should compile your existing BASIC programs.
Quite the contrary, the review in 80 MICRO
(which you reference to be your reason for

purchasing EnhComp) states, "While EnhComp
bears a strong relationship to Basic, the word
from MISOSYS is that there is no attempt to
make a Basic-compatible compiler. Besides,
differences among Basic interpreters for the
Model I/III/4 would make the chances of
compatibility practically nil." The term
"Basic" as used by the reviewer represented
the Microsoft BASIC interpreter as distributed
with TRSDOS 6 under license to Tandy Corp.

Your criticism of the EnhComp reference manual
may well be a personal one. There are
literally hundreds of books covering the BASIC
language. Every interpreter or compiler does
not need a detailed tutorial on the language
since each BASIC verb and function should
operate similarly. You will find that true
with EnhComp. Besides, you already have a
tutorial in your existing BASIC Interpreter
reference; although I would question the term
"tutorial" applied to that manual.

I don't understand your problem with the USING
function. It should work exactly like
interpretive BASIC in "PRINT USING
str$;var, ••• " as well as a more powerful
string function as in "var$ = USING
str$;var, .•• ". Thus, the formatted result can
be manipulated further in the assigned string.
This you cannot do with Microsoft's Basic!
Besides, the examples do work just like they
are documented (as modified by the note in
README/TXT). For instance, the first example
of 'USING "1tU.1Nt";l.5555,2.6666,3.9999' could
have been written as 'USING
"1NNt.1Nt";varl,var2,var3', or 'USING "1NNt.1Nt
1tU1Nt.1t 1t.1t";varl,var2,var3', etc. I don't
understand your confusion. Perhaps our stating
that USING is a function that can assign the
result to a string may have led you to believe
that you couldn't use it normally. For
instance, consider the analagous pair of
statements, 'PRINT TIME$' versus
'T2$=TIME$:PRINT T2$'. See the similarity?

Compile time errors usually result from either
invalid syntax or use of verbs not supported
by EnhComp (like COMMON, CHAIN, EQV, IMP,
ERASE, CALL, WHILE, WEND, WAIT, DEFUSR, NAME,
or SOUND). You can't open files without first
specifying the number of buffers with
ALLOCATE. It does support a lot of other
things that Microsoft's BASIC doesn't (like a
built-in array sort, graphics, random files
greater than 256 LRL, strings greater than 255
characters, etc.). You may be fighting it
instead of trying to work with it. I would
suspect that most programs would need some
degree of modification.

MISOSYS Products' Tidbits - 82 - MISOSYS Products' Tidbits

Volume I. iv

Finally, if you
wa 11, send me a
which you cannot

THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

still run up against a brick
copy of a program on DISK

get to work.

(Fm: James J. Chouinard) I am experiencing
problems with the output from a program
compiled with your basic compiler. The output
is not consistent. Variable "K" is supposed to
be .02 and is okay when output without using
(PRINT USING), is used, Any help you can
provide would be greatly appreciated.

(Fm: MISOSYS) We have been able to reproduce
the problem and also narrowed its scope to
PRINT USING a certain fractional power of ten
and multiples of it. For instance, PRINT USING
11 ffrffr.ffr1fr 11 ;0.0l prints as "1.00"; .02 as 11 .20";
• 08 as 11 .80 11

• Because of the complexity of the
floating point to ASCII conversion program
under an edit mask (i.e. USING), I referred
this problem back to the author of EnhComp,
Phil Oliver. Phil has isolated the cause of
the USING problem which you reported
concerning our EnhComp compiler. A one-byte
patch to the SUPPORT/DAT file should correct
the error. This is SDAT53/FIX and SDAT62/FIX
in The Patch Corner

(Fm: MISOSYS) In TMQ I.iii, Mike Harrow asked
about the Data Tab le length values issued
during an EnhComp compile. Here's what the
tables are for in order from 0-17: variable
names, label names, label addresses, variable
types, variable addresses, data forward
references, line numbers and resolved
addresses, IF forward references, COMMAND
names, COMMAND addresses, FUNCTION names,
FUNCTION addresses, FUNCTION types, ERROR
list, reserved, reserved, reserved,
COMMAND/FUNCTION local variable pointer list.
For what its worth, there it is.

MC - C Compiler changes for x.3?

(Fm: Donald P. Vincent Jr.)
changes required to PRO-MC to
6.3?

Are there any
support LS-DOS

(Fm: MISOSYS) We expect to have an upgrade to
MC later this year (when I get unburied). We
expect to tweak the time functions to make use
of the time field and extended date for stat()
& fstat(). Stat() is a newie. When we have
something to announce, we'll announce it.

K: and GREP speed

(Fm: mark harris) By the way, grep compiles
and works under PRO-MC. Assuming that
GREP4/CMD was compiled under the AZTEC C, PRO
MC optimized CMD file is about 3K smaller but
seems to run a tad slower. Speed is only an
issue on certain expressions. Ex. ".*foo11

takes a lot longer to process than "foo.*11

(Fm:
might
AZTEC

David Huelsmann) One explanation
account for the speed is sue is
C uses a 1 .K buffer for file I/0.

that
that

(Fm: mark harris) Could be, but target search
file was on memdisk. Therefore disk I/0 speed
shouldn't figure in too much. I should point
out that I didn't run exhaustive tests and the
difference in speed was slight. (For example,
something like AZTEC's 10 seconds to PRO-MC 11
seconds.)

(Fm: David Huelsmann)
would see some impact
you described would be

Even on memdisk, you
and the slight impact

consistant, I believe.

(Fm: Les Mikesell) Yes, I also compiled grep
with PRO-MC to test it. (The odd looking asm
code at the end that watches for the break key
press appeared to be the only way to interface
to both compilers). You can reduce the size a
bit more by using PRO-MC's wild-card expander
instead of the coded one, but then you give up
the ability to use * followed by an alpha
character in the filenames. In the (very)
limited testing I did with the two versions
the AZTEC version ran nearly twice as fast. I
expected this on floppies since the AZTEC
compiler uses buffered access (reads in lK
chunks), but I was surprised that the
difference remained consistent even on a
memdisk.

The other point in favor of AZTEC is that I
can link to a mod 3 version of their library
(modified to also work with mod 1 LDOS) while
running in the Mod 4 mode.

(Fm: MISOSYS) You could do the same thing with
PRO-MC if you have the MC model III (also
Model I compatible) version package also.
There is nothing specific about each
implementation except the supplied libraries
and where the executables run. Although I had
intended to make the Model III libraries
available for some fee, there was never

MISOSYS Products' Tidbits - 83 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

interest sufficient to even justify grooming a
disk and documentation to explain how to do
it. The few folks needing Model III libraries
have purchased an MC package to go along with
their PRO-MC package - it's really not that
expensive.

(Fm: Mark Harris) Did you optimize the PRO-MC
code and then compare it? I didn't notice a
factor of 2 difference in speed, but I didn't
research very much either. In any case, PRO-MC
seems fast enough.

(Fm: Les Mikesell) Yes, I did optimize the
PRO-MC code. To see the difference, you must
make sure the search time is significant
compared to the time taken to load the
programs. Try searching all the files on a
couple of disks.

MC and Separate compilation

(Fm: Nate Salsbury) I have been attempting to
'take apart' LU/CCC and compile parts of it
separately to use in my LRUN project. I, like
(undoubtedly many others), am having problems
in getting the proper SYNTAX of all the
various things the compiler looks for.

My present problem stems from what is probably
an incorrect concept of the "extern"
principle. Here is a snippet of code, mostly
taken directly from LU/CCC. The things that I
have added are noted with a "<==" which, of
course, are NOT in my REAL source code!!

extern char lbrname[] <==
extern char nulls [] ; <==
extern int num slots ; <==
#define MAXFILES 256 <==
find_ memb (fname)

char *fname ;
{ int slot ;

if (get directory()== -1) error
("Fatal error - program terminated\n");

slot= find(fname) ;
if (slot== -1) {

printf("%s is not in the library!\n",
fname);

return (-1)
}

return (slot)
}
get directory()
{ unsigned size

. int i,dircrc ;
unsigned cksum=0;
extern struct ludir lud{r <==

extern struct _ludir ldir[] ; <==
lseek (lbr,0L,0);
if (read(lbr,&ldir[0],sizeof(ludir))

!= sizeof(ludir)) /* First record *I
return (-1) ;

num_slots=(ldir[0].len*l28)/sizeof(ludir);

The pre-processor (M:;P)
trouble with this but when
only trying to get the /REL
a /LBR) it promptly stops
error message:

doesn't have any
MC starts up (I am
module to put into
with the following

•• get directory()+ 9: error 79: Unknown
struct/union
if(read(lbr,&ldir[0],sizeof(ludir))!=sizeof(lud
ir))

and, if I let it continue, it barfs on
'&ldir[0]' next, I tried this, first, with the
'extern struct etc,' declarations at the very
top of the file, along with the other 'extern'
declarations. Same result - in fact, that's
why I moved them into the body of
get_ directory().

The comment in the MC manual for Error 79 is:
The structure/union object being declared or
referenced has not had a template defined for
it. [I had expected that the 'template' would
be the external one at the beginning of LU/CCC
which is going to be part of my main(),]

I did notice one strange thing when I examined
my /TOK file with LSFEDII. In the phrase
"extern struct ludir ludir" the 'extern' and
'struct' keywords were replaced by tokens, the
' ludir' and 'ludir' were ASCII characters as
eipected, but the SPACE between ludir and
ludir was replaced by a token(?) BO. I also
looked at the source file and that space is
REALLY a space - it's 20H just like it should
be,

There is (undoubtedly) something I'm doing
wrong vis-a-vis the 'extern' concept, Can you
make me any smarter on this arcane subject? I
really need to be made smarter on THIS point!!

(Fm: H. Brothers) "extern" means "the SPACE
for this object is allocated in another
module, and will be accessible at link time,"

"struct" does not necessarily allocate any
space. Each module which refers to the
structure must have a copy of the template so
it knows how to get to the structure members •
Only one module should have the actual
allocation of space. A handy way to do all

MISOSYS Products' Tidbits - 84 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

this is to put your global structure
declarations in a project.h file and simply
include them in all modules for the program.
Just don't use them to allocate space in the
header or things will really be weird!

(Fm: Les Mikesell) There are a couple of rules
you have to observe when compiling modules to
be linked together. The variables that are
global to more than one module must be defined
in only one file and declared "extern" in all
the others. Preprocessor #defines, structure
declarations and typedefs must be repeated in
each file. This is typically done by creating
a "header" file with the necessary common
information and #including it in each
dependent source file. Note the difference
between declaring a structure and defining
one:

struct junk {
char line[lOO];
struct junk *nextjunk;

} ;

is a declaration and does not allocate any
memory for storage. However, sizeof(junk) will
be known to to compiler, and:

(B)

struct junk pile;

would then
structure.

(C)
struct {

create an

char line[lOO];

instance

struct junk *nextjunk;
} junk;

of the

is a definition and allocates the memory for
storage. Normally you would put a declaration
like (A) in the header file and create the
structs using syntax (B) where needed in each
module. You probably only have syntax (C) in
one module, with nothing to identify the
structure in the other.

(Fm: Nate Salsbury) Hardin, Your comments
regarding 'extern' and 'struct' made eminent
sense and, even better, were right! The module
compiled without a hitch as soon as it found
the template!

Now, I have read a REAL LOT about 'C' (even
including my MC manual if anyone is willing to
believe THAT) and I have NEVER seen any caveat
about THAT problem before (e.g. having to

include a "struct" template in every file
using said structure.)

As I read all the comments, a 'struct' is a
type of variable and variables can be dee la red
as 'extern' and presto - all the 'problems'
would be cleared up at "link time". This
omission is not just in the MC docs - I have
never seen a hint about it in ANYthing I have
read.

Well, NOW I know (one more thing about this
weird 'C' language)! I wonder if I'll ever
get enough knowledge to feel as comfy with 'C'
as I do with B*S*C.

Les - I think I've got it. Thanks for that
lucid explanation. One reason for my confusion
is that I have NEVER seen the illuminating
sentence you wrote.... to wit: "Preprocessor
#defines, structure declarations and typedefs
must be repeated in each file."

I would have intuitively decided on the
#defines but have NEVER seen even a HINT that
structures and typedefs needed repeating as
you suggested with the #include technique.

Your 'guess' was exactly right - the structure
definition was in another, separately compiled
module. When I added it to the one in
question, all smiles... until the next
'mystery' comes along!

(Fm: LDOS Support jjkd) See the new Dr.
(not the Baby Duck issue, the next one)
clever macro solution so that you can
single external file to handle
situations.

Dobbs
for a
use a

both

[Editor's note: it was the Flotsam and Jetsam
article on page 138 of the April 1987 issue.]

PRO-MC and Variable Initialization

(Fm: Mark Harris) Is there an easy way to have
MC initialize all variables to contain zeroes
when they are created? A fair amount of C
programs assume zero initialization. If I've
missed something in the manual, I offer my
apologies. By the way, after several months
with PRO-MC, I remain impressed. It's a very
solid package.

(Fm: MISOSYS) Check out the "-Z=Y" opt ion in
MLINK. It will "generate hex zeroes for DS
regions in DSEGs ••• II If you want that, it .

MISOSYS Products' Tidbits - 85 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

will make the linking a little slower and take
up a lot more /CMD file space since all your
declared buffers will be zeroes in the output
file instead of a "DS" null space. If you
happen to have a "char buffer [5000] ;" in your
program, your /CMD file will be 5000 bytes+
bigger. That what you want? If you do, then
add the "-Z=Y" switch to the JCL line which
invokes MLINK immediately following "MI.INK".

(Fm: LDOS Support jjkd) No 'C' program should
ever assume that a variable not explicitly
initalized contains anything of significance.
I can't even think of a single 'C' compiler
that this would work with. Can you give any
examples?

(Fm: Mark Harris to MISOSYS) Perfect. Now
don't get me wrong. Programs written in any
language that assume some default
initialization of variables make me ill. But
reality being what it is, I have come across a
lot of public domain C programs that assume
all pointers and ints are initialized to zero.
As you might imagine, it's a bit of a drag to
go through 200 lines of declarations and
initialize all variables.

(Fm: Mark Harris to LDOS Support) Well
actually, I've never used a C compiler that
didn't have all variables initialized to zero.
But you see, I've always used C on
mainframes/minis and the OS of course zeros
out all pages when your process initially
receives them. (Security y'know) So, while the
compiler itself is not initializing the data
area, the end result is that everything starts
out as zeros. And the fact remains that a lot
of programs take advantage of that.

Examples: pee on Vax, 3B2, Perkin Elmer, NCR
Tower. Con DG MVs, IBM 370s etc etc. To be
honest, I don't know how the seemingly
thousands of C compilers available on the PC
clones behave.

(Fm: Les Mikesell) My K&R is always in the
wrong place when I want to look things up, but
"The C Programmer's Handbook" from AT&T says:
"Any permanent variable is initialized to 0
(NULL) unless otherwise specified." I'm pretty
sure K&R says roughly the same. ANSI might not
guarantee this since there are some machines
where the same bit pattern does not represent
zero for all data types.

(Fm: Les Mikesell to MISOSYS) Or the correct
way, which is to have the compiler do it for
you. The AZTEC compiler does it at run-time
when you use their linker but generates all
the zeros in the /CMD file if you use the M80
format. Seems like it shouldn't be too hard to
to generate labels for the start and end of
the area and add the code to zero it at start
up. Of course you then have to keep variables
initialized to other values separate.

(Fm: MISOSYS) Aztec does it when you use their
linker because they support a third segment
type (code, uninitialized data, initialized
data). I wanted to stay compatible with
Microsoft - M80 REL format supports only one
CSEG and one DSEG; Rich and I looked at
handling initialized data in a COMMON but that
just wasn't feasible. My easy solution was to
add the "-Z=Y" statement in the linker command
line and that fixes it! What's wrong with that
solution?

(Fm: Les Mikesell) The "-Z=Y" option is
adequate in that it makes the generated code
conform to the definition of the language.
However, it would seem more intuitive to
follow the language definition by default and
require the option for the nonstandard
optimization. Or, better yet, find some way to
initialize at run-time. This might be
impossible to link with 180, but if MLINK were
able to link all Microsoft /REL files, it
wouldn't matter much.

(Fm: MISOSYS) Yes, it would have been
impossible with M80, and we had imposed the
specification that MC was required to work
with M80. That was a given. It then became
impossible to collect all static uninitialized
vars into one "segment" for run-time
initialization purposes. We had considered
using a COMMON but that would have been much
too dificult. I guess that is where the
"GROUP" operator came from in MASM. Thus,
since the linking tool we had to use did not
support a method, we chose to deal with it as
we did. We also recognized that the machine
environment was better off without
automatically filling zeroes. I can't stand to
see those files generated by 180 with sector
after sector of wasted garbage or zeroes. At
least with MRAS, you have the capability of
keeping a smaller OBJ module.

MISOSYS Products' Tidbits - 86 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

(Fm: Byron P. Peebles) Static and external
variables that are not initialized are
guaranteed to start off as zero. Automatic and
register variables that are not initialized
are guaranteed to start off as garbage. (on
3B2 UNIX running AT&T c)

(Fm: LDOS Support jjkd) That certainly is bad
coding practice. I don't know of any micro
implementation that zeros memory. I can't
imagine any implementation of lint not
screaming bloody murder about that kind of
usage.

K&R says (pp.37): "Automatic variables for
which there is no explicit initalizer have
undefined (i.e., garbage) values. External and
static values are initalized to zero by
default, but it is good style to state the
initalization anyway."

(Fm: Mark Harris) You're right. Lint will
complain if it can positively determine that a
variable is not initialized before usage.
Still, next time you're on a UNIX machine that
has sources, run Lint on a couple of the
programs. You will find several programs that
do not initialize sources, mix pointer types,
etc. we, for example, doesn't initialize some
of the counters.

(Fm: Mark Harris to Byron P. Peebles) I
thought I remembered reading it in K&R so I
looked it up again today. It' on page 80-
something. (If you think about it, you don't
want automatic local variables initialized to
zero. Too much overhead everytime a function
is called.) Anyhow:

#include <stdio.h>
static int i;
main(){

printf("%d\n", i);
}

printed out
Certainly not
not a major,
was mildly
question, I
case.

12699 when run on my machine.
initialized to zero. Granted,

earthshaking issue, but since I
flamed for asking the original
thought I ought to support my

Truth be known, I really do not like to
program in C. I earn a living supporting an
Ada compiler. I find the language well thought
out in most cases. I wait for the day when one
can obtain an Ada compiler for a PC that (1)
doesn't cost thousands (I want a validated

compiler), (2) doesn't need massive amounts of
memory, (3) doesn't take minutes to compile
the simplest of programs and (4) is available
for the model IV.

(Fm: mark harris) Another thing. I realize
that I've caused a lot of confusion by not
saying what I really meant. When I said
variables, I didn't mean all variables. I
really meant variables declared at the outer
lexical level (global). Sorry, it was late.

(Fm: Byron P. P~ebles) I found the whole thing
enlightening. I am relearning C after several
years away for it. It sent me back to the
books, since I could vaguely recall some
guaranteed zeros, nulls, and some guaranteed
trouble. One thing this all did for me was
force me to locate the books. No small task
around this office.

(Fm: H. Brothers) MSC guarantees that it will
zero all unitialized external and static
variables.

(Fm: Les Mikesell to LDOS Support) That quote
can be taken as an absolute guarantee that
globals and static values (equivalent to the
"permanent variables" mentioned in the AT&T
book) are always supposed to be initialized to
zero. K&R's comments about style may be safely
ignored. Lint doesn't even object to this
assumption. A sample program:

/* test for uninitialized global*/
#include <stdio.h>
int x;
main()
{
int y;
if (x==O) puts ("X=O");
if (y==O) puts ("Y=O");
return (0);
}

The lint output:

(8) warning: y may be used before set

function returns value which is
always ignored ••• puts

Note that there is no complaint about x being
used before set. A test run on the 3B2 showed
both x and y as zero, though they value was,
of course, accidental.

MISOSYS Products' Tidbits - 87 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

(Fm: LDOS Support jjkd to Mark Harris) Many
examples does not a good programming technique
make. As you indicated, this is referring to
using automatics, not statics or externals. As
Les and yourself pointed out, there is a big
difference in the way these two categories are
handled.

(Fm: LDOS Support jjkd to H. Brothers) Thank
you, as Les indicated I didn't point out the
difference between the handling of statics and
externs vs. autos. Gosh, you just never know
where that nasty ol' stack has been <<grin>>.

(Fm: LDOS Support jjkd to Les Mikesell) Yep,
thanks for emphasizing the difference in the
handling of statics and externals as compared
to automatics.

(Fm: mark harris) Huh, without beating a minor
point into the ground, this all started out
with the question of how to have the compiler
initialize variables to zero since plenty of
public domain C code depends on this.

I never claimed that this was a good
programming technique. It obviously is not.
Furthermore, K&R (I do not know about the
upcoming ANSI standard. Although I should. I
am an alternate on the committee.) specifies
that statics and externals are initialized to
zero, PRO-MC does not follow this. No big
deal. It merely makes porting C code a
somewhat tedious procedure.

Anyhow, thanks for
my question. It's
quick, intelligent
a solid product.

the help
nice to

response

and the answers to
be ab le to get a

to a query on such

Using the linker
variables in a
initialized to

option caused the
small test program

zero, so I guess it

static
to be

did the
trick.

All this was started by me trying to get a
version of fgrep, egrep, or grep up and
running on the IV. (*grep is a UNIX style
pattern matching program. Useful for finding
strings in files.) None of the several
versions I've tried seem to work. Don't really
have the time as of right now to try and
figure out why. *grep is a fairly complicated
program.

The problem is
come across
advantage of

not neccessarily PRO-MC's. I've
a lot of programs that take
compiler feature (like stack

architecture) or machine architecture. The
hard part is finding where in the code the
program screws up. (Hey MISOSYS, wanna do a
source level debugger?)

I'm currently putting the finishing touches on
a command line editor written with PRO-MC. The
program is in the same sort of vein as the one
that Hardin Brothers did in a column some
months back, but a good bit more extended.
Something like SCREENEDIT found on Data
General's AOS/VS machines. Maybe I'll upload
it when I'm satisfied with the way it looks.
It's a nice alternative for people who don't
like to use SHELL's menus.

If anybody out there has a version of *grep
that compiles and runs under PRO-MC, I sure
would appreciate it if you would upload it.

SIDEWAYS with~

(Fm: Jerry Wagers) Have you been wanting to
run SIDEWAYS on your Model III/4/4P? If
you've seen this interesting program running
on other machines, you had to be impressed.
Now a public-domain version of it has just
been uploaded to the database, called
OFFS ID/ ACH.

OFFSIDE will allow you to print any ASCII file
SIDEWAYS with your EPSON compatible or GEMINI
printer, with a line length of up to 255
characters and 80 lines per 'page'. It also
permits multiple pages, so virtually any ASCII
file can be printed. All ASCII characters are
in the character table, and are well-formed
and properly spaced. No more 'funny-looking'
printouts! Even better, OFFSIDE is written in
C and was compiled on Misosys PRO-MC, *and*
the source code is included in the archive for
you 'hackers'! If you want to run it in model
III mode, just recompile it, as is, with K:
instead of PRO-MC.

Full instructions are also included in the
package; although, the program is extremely
simple to use. Additional instructions are
included on changing the character pitch of
the printout if desired.

PRO-MC and LINE

(Fm: Michael Johnston) Roy, I am trying to
implement some debugging macro's for my system
and I'm having a few problems. First, can I
use a macro from within a macro? What I am
trying to do is something like this:

MISOSYS Products' Tidbits - 88 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

11define TRON printf("Line:%u\n",_LINE_ -1);

and then sprinkle TRON statements in the
program. I tried this and the pre-processor
expanded the TRON statement but not the LINE
macro like it says in the manual. Then I
figured that I might have to run through the
pre-processor twice to get the full expansion
performed. When I do this and get to the
compile stage and I get errors on the lines
with the LINE thingy in it. I figured that
the second pass would expand it to the line#
but no-go, I then tried searching all the
files on both MC disks with GREP for LINE
but I came up empty handed.

(Fm: MISOSYS) Page 2-40 states that "macro
text replacement may be nested to a depth of
20"; however, I am not sure if the predefined
macros (such as LINE ') fall into that
class. I do note thatyour""""example only showed
'LINE' which is not the predefined macro

LINE Do you catch the difference? Or
did you"7"ust drop one of the underlines on
each end of "LINE" in your message? Page 2-39
clearly shows TWO underlines required on
either side of the "name".

(Fm: Michael Johnston) Roy, your right. I was
only using LINE instead of LINE • Thats a
major distinction anyone couldmiss~t a quick
glance, I'll try it again and see if it works,

PRO-MC and EOF s

(Fm: Shane Dawalt) I wrote a program which
uses the FSCANF() function in PRO-MC to obtain
an integer value from stdin. I have set
0 KBECHO using the OPTION() function so that
stdin will echo to stdout, i.e. keyboard input
will be displayed. Here's the kicker: when I
press <BREAK> at the FSCANF() function, the
program locks up in an infinite loop
redisplaying the prompt, then an error message
over and over again. The routine is designed
so that integers less than 1 and greater than
1000 generate an error message after which the
routine loops back and redisplays the prompt.
I know that an EOF returned by PRO-MC is
OxFFFF. I assume that FSCANF() is returning
OxFFFF as the result. My routine sees it and
displays the error message then goes back for
more, But, why doesn't the EOF condition
remove itself after the next FSCANF()? Also,
how can the EOF be changed from <BREAK> to the
<SHIFT><whatever><whatever> sequence? I tried
the IOCTL() function (with the sgtty header
included of course) but I kept getting an

"Illegal logical record number."
IOCTL() syntax I used was:

static struct sgttyb sg = { 0, O}

The exact

/* other statements which have nothing
to do with ioctl()*/

if (ioctl (stdin, tiocgetp, &sg))
{ perror ("IOCTL() error");

exit(-1);
}

I* and the program continues •.• */

Am I missing a simple point in the above code
••• or am I completely wrong?

(Fm: Les Mikesell) You have to use an explicit
clearerr(stream) to reset the EOF condition. A
couple of points:

(1) If there is any chance the program will be
run with redirected input (isn't there
always?) you should be sure to test that the
program is
(isatty(O))
the proper
gracefully.

being
before
response

run from
clearing EOF.

to EOF

a terminal
Otherwise,

1s to exit

(2) Unless you are parsing computer generated
output (predictable), it is better to avoid
using fscanf() directly for input. Instead,
use fgets() into a buffer, then sscanf() to
parse the buffer, It is fairly difficult to
recover from an error in fscanf(), and its
concept of "newlines are whitespace" seldom
matches reality.

(Fm: MISOSYS) I assume that you really
specified "TIOCGETP" and not "tiocgetp"; there
is a difference, you know!

~ and C variables

(Fm: Shane Dawalt) I'm puzzled .on the
operation of 'C' when variables are passed to
a function. Specifically, what do I do after
they are passed? Consider the following
hypothetical function:

void myfunc(buf ptr,count,length)
int count, length;
char *bu f ptr;
{ -

}

••• the function coding goes here
return;

MISOSYS Products' Tidbits - 89 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Can I use the variables defined outside of the
11

{ }" of myfunc () or must I define a new set of
variables inside the "{}" and set them equal
to the variables which contained the passed
information? I ask this because, at times,
PRO-MC acts as if it cannot access those
variables passed to the function unless they
are assigned to variables defined within the
function. This happens most of the time in a
situation such as (using the variable
definitions of myfunc()):

if (*(bu f_ptr+count) == '\0')
{
•.•• do something
}

continue with function •••

In this case, the 'C' function will not go to
the " do something", but will continue on
past the end of the if statement. Yeah, I
know, have you checked your logic and
punctuation YES, YES, YES. Nothing is
wrong except this small idea that 'C' doesn't
like to use it's passing variables as working
variables.

(Fm: Les Mikesell) The variables passed to a
function act exactly like conveniently
initialized local variables. Your function
looks reasonable, but of course I can't tell
if the: "if (*(buf ptr+count) -- '\O')"
statement should be - true or not without
knowing what is passed to the function. I
usually add a printf() to display the
variables for debugging when something doesn't
work the way I expect. It is pretty easy to
have an "off by one" error working with 0
based arrays.

(Fm: Shane Dawalt) Actually, that's what I
wanted to hear, I didn't like the idea of
creating variables inside a function for
variables passed to the function. Now •••
what's wrong with that dumb thing?

(Fm: jeff brenton) Well, the function looks
ok, but •••• did your calling function know
that buf ptr was a pointer, and not an int? Is
it possible you passed it as &buf ptr, which
would send a pointer to the pointer to your
buffer, rather than the pointer itself?

As for the variables themselves, you CAN use
them within the function, without copying them
around. Those values, plus the ones defined as
local to the function you are writing, are
available to the function block.

Last thing - are you SURE there is a \0 in the
buffer?

(Fm: Shane Dawalt) In writing that message, I
was assuming that the calling function was
correctly written and assumed the proper
things. As for my program, everything is fine.
Your idea about \0 has already been thought of
and I have placed an initialization statement
at startup to take care of this. Actually, it
was declared extern and public to all
modules/functions which should have cleared
the space to \0 automatically. Or am I wrong
to assume this?

(Fm: LDOS Support jjkd) The variable should be
declared as a static in exactly one module,
and as an external in all others. You may
initalize it when declaring it as static if
desired, If it were external in all modules,
there would never be any storage allocated to
it.

(Fm: Shane Dawalt) Perhaps I'm not using the
correct "language" to explain how I have
declared the variable. The main module has the
variable declared BEFORE the main() function.
The variable is not preceeded by extern. It is
declared with it's data type, then the
variable name. I have the impression, right or
wrong I don't know, that a variable declared
at the very BEGINNING of the program is
automatically assumed static. Of course, I
could have my wires crossed •.• again.

(Fm: MISOSYS) See page 2-14 of the MC users
manual (through 2-17). This defines "scope of
variables" and "storage classes". True that
variables defined outside of any function are
static [main() is a function].

(Fm: Shane Dawalt) Well, what I call external
is what should be called static. Like I said,
the language I use is not what should be used.
[I'm having a rather hard time in programming
in "C". The language barier I'm building
around me isn't helping ••• as you can see.]

Perhaps my explanation above wasn't a good
one. I call variables external when they are
declared outside of a function. I don't "see"
variables as static unless they have an
absolute declaration of STATIC. This is wrong.
I'll have to take Roy's advice and try to
reread the pages he outlined.

MISOSYS Producte' Tidbits - 90 - MISOSYS Product•' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

(Fm: Les Mikesell) No,no ••• Static means
something else in 'c'. A variable declared as
static has permanent storage, but limited
scope. That is, it is only known within the
block where it is declared. A static variable
declared within a function will retain its
value between calls to the function, but
cannot be accessed outside of that function
and will not conflict with another variable of
the same name inside another function. A
static variable declared outside of any
function may be accessed by any function
within the same file but would not conflict
with another variable of the same name
declared as static in another file which might
be linked into the same program. Global
variables (defined outside of functions
without being declared static) are accessable
by functions in all files, but they must be
declared extern in all files where they are
used, except the one where they are defined.
Most compilers will resolve multiple
definitions of the same variable into a single
global, but don't count on it.

(Fm: LDOS Support jjkd) Yes, "external" refers
to "defined, allocated storage and possibly
initalized external to this source code file".
The tag "extern" is not optional.

"Static" is "defined, allocated storage and
possibly initalized in this source code file,
but not within any function". The tag "static"
is optional.

(Fm: Les Mikesell) Static varibles may also be
declared within functions (or inside any
block) to provide permanent variables that are
only accessable within the block.

MC: Structures and bit fields

(Fm: Nate Salsbury) I've been reading the
referenced file in order to learn more about
structures and bit fields. Two questions:

(1) It seems to me that the part labelled 'DCT
byte 4 flags' is really going to be reading
what the Tech Manual calls 'DCT+3' and the
part labelled 'DCT byte 3 flags' will really
be overlaying what the Tech Manual calls
1 DCT+4'.

It also seems to me that the two sections 'DCT
byte 8' and 'DCT byte 7' will actually overlay
'DCT+7' and 'DCT+8'respectively Is that an
error in the DCT/CCC file or in my
understanding of what a structure is/does?

(2) In main() there is a line of code: "dct =
(struct dct *) regs.IY". Do I read that to say
that "the value of regs.IY is being cast to be
a pointer to a structure of the type dct" and
then the result is assigned to dct which was
created as such a pointer earlier?

(Fm MISOSYS) Careful reading of the README
file supplied with MC should clear up the
confusion. Let me cite the applicable text.
''All bit fields are treated as unsigned short
integers; there are no signed bit fields. Bit
fields are ordered from high (most significant
bit) to low (least significant bit) in a
machine word (16 bits). The ordering is such
that the first declared bit field will start
in bit 15 of a double Z80 register (e.g. bit
15 of HL, or bit 7 of H), and so on. Note that
when a word containing bit fields is fetched
from or stored into memory, the high and low
bytes are reversed! This reversal must be
taken into account when creating a set of bit
fields to describe an externally imposed
format (e.g. a bit structure maintained by the
operating system). The reversal is of no
importance if the structure is wholly
contained within the C program, and not used
outside of it."

Now let's take a look at that "dct" structure
as used in DCT/CCC (abbreviated).

struct dct
{ uchar dct instr;

char *<let-driver addr;
/* DCT byte 4 flags:*/

/* bit field declaring 8-bits */
/* DCT byte 3 flags:*/

/* bit field declaring 8-bits */
uchar dct curr;
uchar dct-high;
/* DCT byte 8 allocation data: */L---~--J
unsigned dct gpc: 3;
unsigned dct-spg: 5;
/* DCT byte 7 allocation data: */
unsigned dct head: 3;
unsigned dct-spc: 5;
uchar dct_dir;

} *de t;

The "uchar dct instr;" declaration references
a single byte-which happens to be the first
byte of the , DCT (DCT+0). The "char
*dct driver addr;" declaration references the
driv-;r vector address which is DCT+l and
DCT+2; note that this is declared as a
pointer-to-char which takes up two bytes.

MISOSYS Products' Tidbits - 91 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

Now the fun begins. You are confused over why
the structure says that the flags at DCT+4 are
declared next followed by a declaration of the
flags at DCT+3. The cited reference stated
that bit fields are unsigned short integers
(16 bits) and that the first declared bit
field will be starting in bit 15 of a double
Z8O register, say HL. Now that's the high
order bit of register H. Since Z8O "words" are
stored in low-high order, it means that the
first bit field declared will wind up in the
high order storage location when placed into
or read from memory. Thus, the first bit field
declared must be referencing the fifth byte of
the DCT which is DCT+4; similarly, the ninth
bit being fielded starts referencing the low
order register and thusly references DCT+3
(the fourth dct byte). A lot of the confusion
comes from not recognizing that you are really
declaring up to 16 bits of a "machine word"
once you start a bit field - whether you use
the entire 16-bits or not, The DCT/CCC example
program separates the 16-bits into two 8-bit
byte bit fields of declarations to follow
along with the documentation for the DCT
itself. The second bit field you asked about
follows the same reasoning.

It's important to understand the thrust of the
the final words cited from the README file.
Not all processors reverse a short integer in
memory. Ever wonder what swab() was designed
for? The storage of double words is even more
of consternation; some CPU's reverse the high
and low word and then reverse again the
individual storage of each word (8Ox86, for
instance). Some just reverse the high and low
words while others don't reverse a double word
at all. Then there's long words ...

You are right on about your quest ion
concerning "dct = (struct dct *) regs.IY"
Let's take a look at what it is doing.
"regs.IY" is declared in the Z8OREGS.H header
file as an "unsigned short integer". MC is
rather tight on permitting pointer operations
only on variables declared as pointers. The
"CALL(GTDCT, ®s);" statement issues an
@GTDCT service call which loads register IY
with the DCT address of the drive being
referenced, Within C, this "address" is
conceptually used as a "pointer to a structure
of type de t"; thus, that's the reason for the
cast.

MC and #include variations

Peebles) I think the
add a brief description

(Fm: Byron P.
documentation should
of the differences between: '#include

<file. h>' and 'f/:inc lude "file. h'" when used in
the UNIX environment.

As I'm sure you're aware, K&R indicate the
quoted include searches first in the directory
of the source file before seaiching the
sequence of "standard places", while the
bracketed include does not search the
directory of the source file. (Standard places
usually meaning "/usr/include"), While this
means nothing under LS-DOS implementations, I
could impact the systems developed under LS
DOS/MC once migrated to UNIX, or other
environments.

(Fm: MISOSYS) Since MC is not used in a UNIX
environment, why should it describe the
differences between <stdio.h> and other forms?

(Fm: Byron P. Peebles) It' s my bumble
<rightfully so> opinion that since you suggest
that programs developed under LS-DOS with MC
will be compilable under UNIX, you should
point out areas where the handling of things
(like forms of include) differs. I would have
kept quiet on the entire issue, except your
documentation, which does appear to be
excellent, uses several forms of include for
the same declaration on the same page. Just
seems it might cause confusion, that's all.

(Fm: MISOSYS) That's to show that in MC, all
of those forms are equivalent. That's for the
folks trying to port stuff from other systems,

MC and bug reports/fixes

(Fm: Roger A. Sabin) While using the PRO-MC
compiler, I came across a problem. Some of the
float routines do not work properly.
Specifically, the following routines do not
work: fraise(), fexp(), and fsqr(). Also, the
sinh() function returns -HUGE when the
argument is zero.

(Fm: MISOSYS) We had a number of little
problems pending with MC that we have
corrected. I located the root of the problem
you were having with fexp() and fsqr(). The
problem also carried over to fraise(). Of
course, fsqr() uses fraise() which uses
fexp()! The latter was where the problem lay.
Apparently one line of data from the table of
constants associated with the polynomial
expansion was corrupted. Fixing fexp() cleared
up the problem with all three,

MISOSYS Products' Tidbits - 92 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

I also located the bug in sinh(O.O). The
problem was actually with the ddv2()
function; it didn't test for a zer~ value
before doing its thing. That function divides
by two a float or double by decrimenting the
exponent byte (which is kept in excess 128
notation). Since a zero exponent is used to
designate a zero value float, an arbitrary
decrement from OOH to OFFH would arbitrarily
change the float from a value of zero to some
fraction times two to the minus 127th. That's
why you got a large negative result from
sinh(O.O) [calculated as _ddv2(exp(x)-exp(
x))].

Note to our readers: corrected versions of the
appropriate library modules were put on DISK
NOTES 7 as suggested in TMQ I.iii.

(Fm: Jeffrey McLean) I have found more bugs in
MC. External and static variables are not
initialized to zero. K&R states on page 198:
"Static and external variables which are not
initialized are guaranteed to start off as ~- 11

Scanf and fscanf(stdin, •••) do not echo
characters that are typed in to the screen.
Scanf() and fscanf() do not handle non white
space, non conversion characters correctly.
The program TEST/CCC demonstrates this
problem. The FIXBUFS option does not work. One
last bug occurs in expressions where UNSIGNED
LONG values are converted to DOUBLE (see
enclosed test program).

(Fm: MISOSYS) Here are the solutions. As far
as guaranteeing non-initialized statics and
external variables to be zero, that
essentially requires them to be initialized to
zero. The Aztec assembler does this by
collecting all uninitialized statics, et al,
into a third segment type supported by their
assembler (code, data, uninitialized data).
Their runtime support can then zap that region
with zeroes. By doing so, they don't take up
disk file space in the object program for the
zeroed region. We decided to support
Microsoft's REL bit stream which restricted us
from implementing such a method. The
alternative was to either ALWAYS initialize
such data to~ explicitly or not initialize
(i.e. leave initialization subject to whatever
was in memory by using DEFS for declaration).

We decided that to force the compiler to
generate zeroes would not necessarily be best
for the target environment; a Z80 with 180K
drives. That's why we went to such great
extent in our linker to provide an ability to
keep DS regions declared in data segments! On

the other hand, we provided a linker switch,
"-Z=Y",. to allow the programmer control over
the generation of zeroed space. You can edit
the MC/JCL file to add that switch to the
MLINK command line. You can also make a change
in the MCMACS file. The macro, $VAR, is used
to declare space for statics (local or
global). The space is defined by the
statement;

DS 1tSIZE

If you want to have those regions explicitly
initialized to zero, change the statement to;

DC 1tSIZE, 0

You could even get fancier by adding
conditional code centered around a #option. We
may discuss that in TMQ I.iv.

That's the best we can do with uninitialized
data. The echoing of characters during stream
input from the keyboard is governed by the
KBECHO option. There was a bug in fopen which
effected KBECHO as reported in TMQ I.iii. If
you add the statement "opt ion(O KBECHO, 1);" to
your code, you will get echo.- That fixes up
your second problem.

We have revised scan() (which is used by the
higher-level scan functions) to agree with the
System V handbook on termination conditions.
It was a major revision; however, in so doing,
we have cleared up a number of bugs in that
function. We even added code in scan to
properly terminate float fields.

The FIXBUFS option did
Corrections had to be
reported in TMQ I.iii.

not
made

work correctly.
to fopenO as

I tracked your "unsigned long to double"
problem down to an obscure bug in the @UL2DST
routine. This routine in LIBA converts an
unsigned long number on the stack to a double
on the stack. Fifty percent of the time it
would work correctly. That's because the error
would occur if the return address of the
@UL2DST caller was an even number!

(Fm: Richard Deglin) I came across a bug which
was interested when I fixed some other problem
associated with structure initialization. Here
are patches which correct a problem
encountered when initializing nested
structures. They are in The Patch Corner as
INSTRU?? /FIX.

MISOSYS Products' Tidbits - 93 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

I also noted the discussion in TMQ I.iii which
concerned itself with the initialization of
automatic variables. This is something I
overlooked when implementing MC. Here are some
patches which extend the syntax of automatic
scalar variable initialization to include any
arbitrary expression as the initializer. In
doing this, however, the code generated will
often be less efficient than the old way;
nevertheless, the patch should stand because
it brings MC into conformance with standard C.
They are in The Patch Corner as AUTOIN??/FIX.

MRAS assembler

(Fm: Michael R. Johnston) I received the fall
TMQ and it's great! I can't say enough about
it. I sure hope that subscriptions pick up -
I'd hate to lose this one! Your comments about
spending more time with the family really hit
a soft spot here. All too often in the height
of writing this program or debugging that
program, we forget about the ones we love. If
more programmers would remember this, maybe
there wouldn't be so many of us divorced.
Cone lusion: Keep the copmments about your
family in TMQ; it makes it much more of a
'friendly' publication.

I would like to congratulate you on PRO-MRAS!
I never thought that writing in assembly could
be so much fun. I used to use ALDS but I got
tired of it's limitations, i.e. DS's of 255
bytes or less per line among other things.

I have a quick BUG REPORT for you on PRO-MRAS
version l.Oa. The following statements do NOT
report an error.

ETX EQU 03
UNDRLN DC 80,' ',ETX

The code generated will be 80 underlines
followed by a zero byte even though ETX is
defined as 3. Using this with DSPLY really had
me going. I couldn't figure out why I was
getting garbage after it printed the string.

(Fm: MISOSYS) It is probably wrong of MRAS not
to complain about the syntax of your
statement:

UNDRLN DC 80, '_' ,ETX

since the statement does not adhere to the
correct syntax [the DC pseudo-op does not
permit repetition]. You would need to recode
the statement as a pair of statements:

UNDRLN DC
DB

80 I I ,_
ETX

I don't feel it is necessary to
patch for this. It will be corrected
gets reassembled to another release.

work up a
when MRAS

(Fm: John M. Pantone) I have been using your
MRAS assembler now for several months, and I
am extremely pleased. MRAS is, without a
doubt, one of the finest assemblers, micro or
mainframe based, I have ever used.

I have, however, run into a rather obscure bug
which I would like to bring to your attention.
It relates to the DW pseudo-op; specifically
when multiple arguments are provided, and
where the first arguiment is the address of a
labe 1.

If the first of many arguments to DW is a
constant, or if DW is used with single
arguments only, the bug doesn't appear. I have
enclosed four figures which illustrate the
problem. I have tried to isolate the bug to as
small an example as possible, while still
illustrating the situation,

In the process of preparing this letter, I ran
into 2 other, less disturbing, bugs: (1) The -
CI flag of MRAS appears to do nothing - the
REL file produced (not a CIM) file as
documented) is identical to one produced
without the -CI flag. (2) The -I=y flag of
MLINK, while it does, in fact produce a core
image file, does not use the CIM extension (it
continues to use the CMD extension) as

-documented.

I hope you are able to track down this DW bug
it is rather nasty, since the listing

appears just fine - it is only the CMD file
generated with MLINK which shows the error;
not too many people are likely to look there
for such a thing. The -CI and -I=y bugs are,
perhaps, really just documentation changes.

(Fm: MISOSYS) I greatly appreciate the detail
of your bug report and the extent to which you
have narrowed down the problem. It certainly
made it easy for me to find and rectify the
problem. Actually, the bug was more obscure
than you even thought, It, of course, was
isolated to specifically the case of multiple
operand DW's. Next, you had to have a relative
value (in any operand position) immediately
followed by an absolute value which was
negative; particularly one in which the
negativity was indicated by the presence of a

MISOSYS Products' Tidbits - 94 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

minus sign (or another relative value of directly generate the /APP core image file by
different mode). a command such as:

For instance, if, 1n your case, you coded the
first line rather than the second

DW DUMLAB,OFFFFH,0
DW DUMLAB,-1,0

the correct values would be generated. The bug
was that the mode of reference was not being
initialized to absolute for the 2nd through
nth operands of the DW statement since that
was being done only preceding the parsing of
each statement. The unary minus sign is a
special case in expression analysis. Needless
to say, MRS612/FIX (Model 4) and MRS512/FIX
(Model III) are a short patch which will
correct the bug.

As for your first note, it is true that the "
Cl" flag of MRAS must be entered in addition
to the -GC switch. We do feel that the
workaround precludes the necessity of
attempting a program patch.

Point two is well taken. Although MI.INK does
indeed accept the "-I=y" flag and generates a
core image file, the file spec gene rat ion
doesn't switch to "/CIM" from the "/CMD"
default. Again, I don't feel it necesssary to
bother with a patch. MLINK has been patched
enough. We do have a plan for a "possible" re
assembly later on this year if time permits.
It should be correctable then. Again, thanks
for making our job easier.

(Fm: Dirk Vandenbossche) I've been using your
software packets, PRO-WAM, PRO-MRAS, and PRO
MC for some time now and they all seem to work
well. Yet I've met some problems.

In the 80-MICRO issue of May, an assembly
language program 'PRSET/APP' that works with
your PRO-WAM, is explained. As I don't know
much about assembly language, I've typed in
and compiled the program with MRAS. As you can
see in the listing added, the assembler points
out several error messages. As I considered
the program to be correct, I assumed something
had to be wrong with MR.AS. So I tried out the
TYPER program, you enclosed in your PRO-WAM
packet. When compiling, I met the same error
messages. Do you see a possible
explanation/solution for this?

(Fm: MISOSYS) There's an easy explanation for
the problems you were having with assembling
PRSET/ASM using MR.AS. Your solution is to

MRAS PRSET +O=PRSET/APP -GC-CI

That's because trying to generate a REL file
imposes certain constraints on the operand
fields. The errors you experienced can be
explained by simply reading page 2-15 of the
MR.AS manual. A statement such as

DC .HIGH.$<8-$+256,0

has at least three operations not permitted in
the expression when assembling a relocatable
object module. It is permitted when assembling
an executable command file. I believe that
Hardin Brothers used our PRO-CREATE assembler:
MRAS would behave similarly when the "-GC"
switch is used.

PaDS - Partitioned Data Set Utility

(Fm: Irwin B. Burton) I have tried to use PaDS
with LDOS 5.3. I found that by eliminating the
PASSWORD protection I can make up a PaDS of my
utilities. However, I have trouble adding any
5.3 utilities to this file. As an example,
HITAPE from 5.1.4 loads in and runs fine under
5.3. I'm sure this has to do with the PASSWORD
- DATE/TIME changes in the directory but I'm
not enough of a hacker to figure out just what
is happening. I would appreciate any help you
can give.

(Fm: MISOSYS) You guessed wrong. The reason
that HITAPE (or other utility) from LDOS 5.3
shows up as a DATA member of PaDS has nothing
to do with passwords (or the lack thereof in
5.3). What it has to do with is a test that
PaDS makes to ensure that the appended member
is a CMD file. It rejects as being data, any
file which does not start with either a OlH
(load record) or a 05H (comment).

In LDOS 5.3, the header comment record was
suppressed to save disk space (just in case a
file went to a granule boundary without the
header); this makes 5.3's files start with a
lF record. Thus, PaDS assumes those are not
programs.

Here's a little fix you can make to PaDS which
will make it more lenient (it will accept any
char less than 20H as valid.

PATCH PDS.PDS (D20,75=20 30:F20,75=05 20)

MISOSYS Products' Tidbits - 95 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

While you're about it, add the PDS553/FIX
patch to the PDS(BUILD) module. That revises
PDS(BUILD) to the password convention of 5.3.
A similar patch for PRO-PaDS was in TMQ I.iii.
That should fix you up. A similar patch for
making PRO-PaDS more lenient is:

PATCH PDS.PDS (D20,55=20 30:F20,55=05 20)

PRO-WAM Window Application Manager

(Fm: Tom Gallaudet) The Sort key in the first
record of ADDRESS/DAT only affects the PSORT
sorting. Changing it has absolutely no effect
on the "Search for ?) " key. I'm looking to
search by Company name, the third field, 20
characters long.

(Fm: MISOSYS) It seems like ADDRESS is hard
coded to use the last&first name fields for
searching; the header key field(s) are only
for PSORT. I changed this in PRO-WAM Release 2
so that ADDRESS can pick up the information on
the first key and use it. If you go for the
upgrade, you'll have what you were asking for
(and more).

(Fm: Alan H. Pesetsky) Been fiddling with a
copy of Pro-NTO (now WAM) that I bought from a
RS store some time ago (#00549). I seem to
have trouble using Shift fl & Shift f2 & shift
f3 when I have KSM Plus installed - fl & f2 &
f3 work however. KSM Plus allows the use of
both sets and I do. Is there a way around this
conflict, if it is a conflict. Also are there
patches or updates I should have?

(Fm: LDOS Support jjkd) If you have KSMPlus
installed with definitions for the function
keys, they can't be used to control Pro-WAM.
You must "undefine" those keys before Pro-WAM
can see them,

(Fm: Bob Haynes) Here's a mini-tip for anyone
using Roy's PRONTO/PROWAM program .•• Would you
prefer not to use a multi-key (control-P, or
whatever) command to activate your PROWAM
system? Just found out that you can specify an
Fx key as the activation character, even
though the docs seem to imply you cannot.
Works just fine, apparently since PROWAM does
not take over those keys under AFTER it
activates. When doing assembly programming, a
quick double tap on Fl takes me directly to my
SVC/APP screen; once for PRONTO, once for the
/APP. I love it!

(Fm: MISOSYS) The only thing you would lose by
using a function key as the PRO-WAM activation
"hot key" is the ability to get the PRO-WAM
menu displayed once you got into an
application. Some folks forget what they have
assigned to a key. If you are already in one
application, pressing the hot key still brings
up the menu - unless the hot key happens to be
a function key then you would invoke the
application assigned to that function key.

(Fm: Dirk Vandenbossche) There is a problem
concerning the file WINDOW/CCC also included
in the PRO-WAM packet. When compiling this
program with MC, I came across error messages.
In the manual, you describe on page 2-12 the
pointer operations that can be used. The
operations<<,>>,&, and I seem not possible.
Can you please indicate how you did compile
this program?

(Fm: MISOSYS) Your problem with the WINDOW/CCC
functions is because they were written for our
LC compiler; long before MC was released. MC,
being a full compiler, is tighter about your
use of identifier types. MC flags an error
when you try to use a pointer in a non-pointer
operation - even though on the particular
implementation, an integer and a pointer are
of the same bit length. It just makes good
sense for portability to insist that pointer
operations use pointers and normal arithmetic
operations using pointers (except those
permitted for pointers) be disallowed. I have
attached a sheet showing the two functions
which need "updating" by the addition of a
cast to unsigned int. Edit your WINDOW/CCC
file to include these casts and you will have
no further problems. These are the revised
lines 11, 12, 15, and 28 of WINDOW/CCC:

*(++buf+((unsigned int)regs[BC]>>8))='\0';
if (((unsigned int)regs[AF] & 1) == 0)
return(((unsigned int)regs[BC]&Oxff)+l);
return((unsigned int)regs[AF] >> 8);

MISOSYS Products' Tidbits - 96 - MISOSYS Products' Tidbits

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

The Patch Corner
General Information

The following information should be read
before you type into a file, any of the
patches noted in THE MISOSYS QUARTERLY.

It is unfortunate that our printer prints
the letter "O" and the number "O" almost
identically. Unless we utilize a filter to
"slash II the number zero, the two are
difficult to distinguish. However, when it
comes to patches, all is not lost. In an
LOOS 5 or TRSDOS 6 direct patch, the letter
"oh" is not used in the patch code (it may
appear in comments which are lines beginning
with a dot). The direct patch format of
TRSDOS 6 which we use in our patches is:

Drr,bb=xx xx xx xx xx xx
Frr,bb=xx xx xx xx xx xx

The patch is usually a pair of lines. The
first line begins with the capital letter,
"dee". This is immediately followed by the
"rr" field (which stands for record). The
"rr" field is always two hexadecimal digits.
Actually, it can be a 4-hexadecimal digit
number if the file to be patched has more
than 256 sectors. Hex digits use nothing but
the numbers zero through nine and the first
six letters of the alphabet: A,B,C,D,E,F, or
a,b,c,d,e,f. The record number is
immediately followed by the "bb" field
(which stands for byte). The byte field is
also two hexadecimal digits - just like the
record field. This is immediately followed
by an equal sign, "=" The equal sign is
immediately followed by the first patch byte
(the "xx" shown above). The patch byte is
again two hexadecimal digits. Where more
than one patch byte is included on a line,
it is separated from its predecessor by a
single SPACE. The line is terminated with an
ENTER.

TRSDOS 6 and LOOS 5.3 patch formats use a
"find" line record. This is used to verify
that the file being patched is actually the
file you want patched. All of the bytes

• ALTBANK/FIX by Paul M. Bradshaw 03/22/87

noted in the "F" line or lines ImJSt be
matched in the file before any of the "D"
patches will be utilized. The second line of
the pair begins with the letter "F" which
stands for FIND. The next six positions are
identical to the preceding "D" line.
Following the equal sign on the FIND line
are pairs of hexadecimal digits which should
align themselves with the preceding line.

So far, the letter "oh" is not used. The
only place outside of a comment line where
you could find the letter "oh" used is if
instead of showing the patch bytes as a
series of hexadecimal pairs, it was depicted
as a string. A string could be used if one
was patching a string of displayable ASCII
characters. For instance, the patch:

D03, 14="This is a new string"
F03, 14="extra space for what"

would replace the string, "extra space for
what", with the string, "This is a new
string". Strings are shown within double
quotes. That's the only place where a letter
"G" through "Z II could be used.

Also, even though TRSDOS supports the colon
notation to put more than one patch line on
the command line (e.g. "PATCH TEST
(DOl,27=56:FOl,27=65)"), it does not support
the colon separator when used in a FIX file
(it does support a semicolon which is used
under LOOS to signify a trailing comment);
LOOS 5.3 supports a colon separator both in
a command line patch and a fix-file patch.
In order to conserve space 1n THE MISOSYS
QUARTERLY, we may logically print more than
one FIX line on a printed line; HOWEVER,
ALWAYS USE A HARD <ENTER> FOR THE COLON WHEN
TYPING IN A FIX FILE for TRSDOS 6.

If you use the FIXES?/TXT file from the DISK
DNOTES corresponding to this issue, please
separate out the individual fixes which you
need by use of any text editor you find
convenient to use.

• Patch to cause ALTRES to use bank number 4. If you wish to use a bank other
• than bank 4, replace the 4's with whatever bank number (in hex, up to OF) you
• wish to use. Note in the 7th line, that the number is '84' and NOT '04'.
D01,1A=04:F01,1A=02:D01,9E=04:F01,9E=02:D02,1F=04:F02,1F=02:D02,28=04:F02,28=02
D03,83=04:F03,83=02:D03,F2=04:F03,F2=02:D07,EC=84:F07,EC=82:D08,32=04:F08,32=02
D08,50=04:F08,50=02

The Patch Corner - 97 - The Patch Corner

Volume I.iv THE MISOSYS QUARTERLY - SPRING 1987

• AUTOINSl/FIX - patch MCSl/CMD - RND - 05/19/87
• allow arbitrary expression as initializer of an automatic scalar variable
DlE,EB=04 00 B9 75 03 00 B9 75 05 00 B9 75 01 00 B9 75
FlE,EB=04 00 BB 75 03 00 BB 75 05 00 BB 75 01 00 BB 75
D23,B8=21 06 00 39 7E 23 B6 28:F23,B8=CD B9 AD 22 67 70 21 01
D23,C0=13 21 D7 54 ES ES ES CD AC 7E Fl CD 4C 95 Fl CD
F23,CO=OO 22 79 B4 2A 77 B4 22 69 70 CD 65 AC 22 59 70
D23,D0=36 C3 Fl C9 CD B9 AD 22 67 70 3E 01 32 79 B4 2A
F23,D0=21 00 00 22 79 B4 2A 59 70 7C BS CA 2D 76 2A 59
D23,E0=77 B4 22 69 70 CD 65 AC 22 59 70 AF 32 79 B4 7C
F23,E0=70 ES CD AB BF Fl 22 65 70 7C BS 20 OB 2A 59 70
D23,FO=BS CA 2D 76 ES CD AB BF Dl 7C BS 20 OA DS CD 9B
F23,FO=ES CD 9B BF Fl 22 65 70 7C BS CA lB 76 2A 65 70
D24,00=BF Fl 7C BS CA lB 76 22 65 70 11 08 00 19 7E FE
F24,00=ll 08 00 19 6E 26 00 ES CD 09 70 Fl 7C BS 28 11
D24,10=09 20 11 2A 59 70 ES CD 39 DS Fl 2A 69 70 22 77
F24,10=2A 59 70 ES CD 39 DS Fl 2A 69 70 22 77 B4 C3 2D
D24,20=B4 C3 2D 76 21 06 00 39 7E 23 B6 20 06 CD 50 76
F24,20=76 21 06 00 39 CD AC E4 CD A4 E4 7C BS 28 05 CD
D24,30=C3 19 76 2A 65 70 11 09 00 19 6E 62 ES CD 2B 6F
F24,30=50 76 18 75 2A 65 70 11 09 00 19 6E 26 00 ES CD
D24,40=Fl ES Cl 21 6B 70 CD EE E4 2A 65 70 11 04 00 19
F24,40=2B 6F Fl ES Cl 21 6B 70 CD EE E4 2A 67 70 ES 2A
D24,SO=CD 8B E3 CS DS CD Al 6E Fl Fl CD A4 E4 ED SB 67
F24,50=65 70 11 04 00 19 CD 8B ~3 CS DS CD Al 6E Fl Fl

Volume I.iv

D24,60=70 CD 7E E4 7C BS C4 56 BE 00 00 00:F24,60=CD A4 E4 Dl CD 7E E4 7C BS C4 56 BE

• AUTOIN52/FIX - patch MC52/CMD - RND - 05/19/87
• allow arbitrary expression as initializer of an automatic scalar variable
Dl9,B3=08 72 05 00 05 00 00 72 04 00 EE 71 03 00 EE 71 02 00 E9 71 01 00 E9 71
Fl9,B3=38 72 05 00 05 00 30 72 04 00 17 72 03 00 17 72 02 00 OD 72 01 00 OD 72
DlF,57=CD 09 72:FlF,57=CD D4 AB
DlF,D9=18 09 Fl CD 6E CE Fl C3 BE 71 00:FlF,D9=Fl Cl El ES CS FS 7C BS C4 35 BF
D20,3C=l8 09 CD 6E CE Fl C9 00 00 00 00:F20,3C=Fl Cl El ES CS FS 7C BS C4 40 CS
D20,4F=C9 21 OF 6B ES CD AO 9C Dl Fl El ES FS ES DS CD C8
F20,4F=C9 21 OF 6B ES CD AO 9C Fl Fl El ES FS ES 21 OF 6B
D20,60=A6 Fl Cl 21 4B 6B CD 36 E6 2A OF 6B 18 OC 2A OF
F20,60=ES CD CB A6 Fl Fl Fl Cl El ES CS FS 7C BS 28 11
D20,70=6B CD FA 71 CD 48 CS 2A 11 6B ES CD 6D CS Fl C9
F20,70=21 OF 6B ES Fl Cl El ES CS FS ES CD B6 97 Fl Fl
D20,80=01 02 00 72 21 OF 6B ES CD 90 9A Fl C9 21 06 00
F20,80=01 02 00 72 C9 Fl El ES FS ES Cl 21 4B 6B CD 36
D20,90=39 7E 23 B6 CA D4 AB Fl 21 DO 54 ES ES ES CD FE
F20,90=E6 2A OF 6B ES CD 6D CS Fl 18 21 2A OF 6B ES CD
D20,A0=7E Fl CD 61 94 Fl 21 DD 54 ES DD ES ES CD lD 95
F20,A0=6D CS Fl CD 48 CS 21 OF 6B 23 23 CD F4 ES ES CD
D20,BO=Fl Fl 21 DO 54 ES CD 22 90 C3 SB 71:F20,B0=6D CS Fl C9 21 OF 6B ES CD 90 9A Fl

• AUTOIN60/FIX - patch MC60/CMD - RND - 05/19/87
• allow arbitrary expression as initializer of an automatic scalar variable
D20,47=59 4D 05 00 05 00 51 4D 04 00 3F 4D 03 00 3F 4D 02 00 3A 4D 01 00 3A 4D
F20,47=8F 4D 05 00 05 00 87 4D 04 00 6D 4D 03 00 6D 4D 02 00 63 4D 01 00 63 4D
D26,70=CD SA 4D:F26,70=CD 31 92
D27,29=18 09 Fl CD 2C BA Fl C3 F2 4C 00:F27,29=Fl Cl El ES CS FS 7C BS C4 90 A7
D27,8C=l8 09 CD 2C BA Fl C9 00 00 00 00:F27,8C=Fl Cl El ES CS FS 7C BS C4 24 AE
D27,B7=C9 00 2A 97 45 7C BS C2 BA:F27,B7=18 76 2A 97 45 7C BS 28 05
D27,C0=4D 21 8B 45 ES CD F4 7F Dl Fl El ES FS ES DS CD
F27,CO=CD BA 4D 18 6A 21 8B 45 ES CD F4 7F Fl Fl El ES
D27,DO=C4 8A Fl Cl 21 C7 45 CD 23 DC 2A 8B 45 18 OC 2A
F27,DO=FS ES 21 8B 45 ES CD C4 8A Fl Fl Fl Cl El ES CS
D27,E0=8B 45 CD 4B 4D CD 36 AE 2A 8D 45 ES CD 89 AE Fl

The Patch Corner - 98 - The Patch Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987

F27,EO=F5 7C BS 28 12 21 SB 45 ES Fl Cl El ES CS F5 ES
D27,FO=C9 21 SB 45 ES CD CO 7D Fl C9 21 06 00 39 7E 23
F27,FO=CD D7 7A Fl Fl 18 38 Fl El ES F5 ES Cl 21 C7 45
D28,00=B6 CA 31 92 Fl 21 09 29 ES ES ES CD 15 SC Fl CD
F28,00=CD 23 DC 2A 8B 45 ES CD 89 AE Fl 18 22 2A SB 45
D28,10=36 77 Fl 21 16 29 ES DD ES ES CD 03 78 Fl Fl 21
F28,10=E5 CD 89 AE Fl CD 36 AE 21 BB 45 23 23 CD El DB
D28,20=09 29 ES CD AA 71 C3 BF 4C 00 00 00 00 00 00
F28,20=E5 CD 89 AE Fl 18 08 21 BB 45 ES CD CO 7D Fl

• AUTOIN61/FIX - patch MC61/CMD - • RND - 05/19/87
• allow arbitrary expression as initializer of an automatic scalar variable
DlE,DA=04 00 AB 49 03 00 AB 49 05 00 AB 49 01 00 AB 49
FlE,DA=04 00 AA 49 03 00 AA 49 05 00 AA 49 01 00 AA 49
D23,A7=21 06 00 39 7E 23 B6 28 13:F23,A7=CD AB 81 22 56 44 21 01 00
D23,B0=21 CB 28 ES ES ES CD 9B 52 Fl CD 3B 69 Fl CD 22
F23,B0=22 68 88 2A 66 88 22 58 44 CD 54 80 22 48 44 21
D23,C0=97 Fl C9 CD AB 81 22 56 44 3E 01 32 68 88 2A 66
F23,CO=OO 00 22 68 88 2A 48 44 7C BS CA lC 4A 2A 48 44
D23,D0=88 22 58 44 CD 54 80 22 48 44 AF 32 68 88 7C BS
F23,DO=E5 CD 97 93 Fl 22 54 44 7C BS 20 OB 2A 48 44 ES
D23,EO=CA lC 4A ES CD 97 93 Dl 7C BS 20 OA D5 CD 87 93
F23,EO=CD 87 93 Fl 22 54 44 7C B5 CA OA 4A 2A 54 44 11
D23,FO=Fl 7C BS CA OA 4A 22 54 44 11 08 00 19 7E FE 09
F23,F0=08 00 19 6E 26 00 ES CD F8 43 Fl 7C BS 28 11 2A
D24,00=20 11 2A 48 44 ES CD 08 A9 Fl 2A 58 44 22 66 88
F24,00=48 44 ES CD 08 A9 Fl 2A 58 44 22 66 88 C3 lC 4A
D24,10=C3 lC 4A 21 06 00 39 7E 23 B6 20 06 CD 3F 4A C3
F24,10=21 06 00 39 CD 5C BB CD 54 BB 7C BS 28 05 CD 3F
D24,20=08 4A 2A 54 44 11 09 00 19 6E 62 ES CD lA 43 Fl
F24,20=4A 18 75 2A 54 44 11 09 00 19 6E 26 00 ES CD lA
D24,30=E5 Cl 21 5A 44 CD 9E BB 2A 54 44 11 04 00 19 CD
F24,30=43 Fl ES Cl 21 5A 44 CD 9E BB 2A 56 44 ES 2A 54
D24,40=3B B7 CS D5 CD 90 42 Fl Fl CD 54 BB ED 5B 56 44
F24,40=44 11 04 00 19 CD 3B B7 C5 D5 CD 90 42 Fl Fl CD
D24,50=CD 2E BB 7C BS C4 42 92 00 00 00:F24,50=54 BB Dl CD 2E BB 7C B5 C4 42 92

• AUTOIN62/FIX - patch MC62/CMD - RND - 05/19/87
• allow arbitrary expression as initializer of an automatic scalar variable
Dl9,CE=23 46 05 00 05 00 lB 46 04 00 09 46 03 00 09 46 02 00 04 46 01 00 04 46
Fl9,CE=53 46 05 00 05 00 4B 46 04 00 32 46 03 00 32 46 02 00 28 46 01 00 28 46
D1F,72=CD 24 46:FlF,72=CD EF 7F
D1F,F4=18 09 Fl CD 86 A2 Fl C3 D9 45 00:F1F,F4=Fl Cl El ES CS F5 7C BS C4 50 93
D20,57=18 09 CD 86 A2 Fl C9 00 00 00 00:F20,57=Fl Cl El ES CS F5 7C B5 C4 5B 99
D20,6A=C9 21 2A 3F ES CD:F20,6A=C9 21 2A 3F ES CD
D20,70=BB 70 Dl Fl El ES F5 ES D5 CD E3 7A Fl Cl 21 66
F20,70=BB 70 Fl Fl El ES F5 ES 21 2A 3F ES CD E3 7A Fl
D20,80=01 02 00 46 3F CD F7 Cl 2A 2A 3F 18 OC 2A 2A 3F
F20,80=01 02 00 46 Fl Fl Cl El ES CS FS 7C BS 28 11 21
D20,90=CD 15 46 CD 63 99 2A 2C 3F ES CD 88 99 Fl C9 21
F20,90=2A 3F ES Fl Cl El ES CS F5 ES CD Dl 6B Fl Fl C9
D20,A0=2A 3F ES CD AB 6E Fl C9 21 06 00 39 7E 23 B6 CA
F20,AO=Fl El ES F5 ES Cl 21 66 3F CD F7 Cl 2A 2A 3F ES
D20,BO=EF 7F Fl 21 ED 28 ES ES ES CD 19 53 Fl CD 7C 68
F20,BO=CD 88 99 Fl 18 21 2A 2A 3F ES CD 88 99 Fl CD 63
D20,CO=Fl 21 FA 28 ES DD ES ES CD 38 69 Fl Fl 21 ED 28
F20,C0=99 21 2A 3F 23 23 CD BS Cl ES CD 88 99 Fl C9 21
D20,DO=E5 CD 3D 64 C3 76 45:F20,D0=2A 3F ES CD AB 6E Fl

Volume I. iv

The Patch Corner - 99 - The Patch Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987

BCS3/FIX - 05/19/87 - Patch to EnhComp BC/CMD
• Corrects error trap of IF exp THEN missing-clause
• Apply via, PATCH BC BC53
D2C,9A=17 SB:F2C,9A=98 63:DOS,2F=B7 C2 98 63 C3 BD 66:F05,2F=OO 00 00 00 00 00 00

• BC63/FIX - 05/19/87 - Patch to PRO-EnhComp BC/CMD
• Corrects error trap of IF exp THEN missing-clause:, Apply via, PATCH BC BC63
D2C,AD=ll 2F:F2C,AD=A6 37:DOS,29=B7 C2 A6 37 C3 CF 3A:F05,29=00 00 00 00 00 00 00

• INSTRUSl/FIX - patch MCSl/CMD to correct initialization of nested structures
, RND - 05/24/87

Volume I. iv

D22,2B=21 08 00 39 6E 26 00 7D B7 C4 71 AD ES:F22,2B=FS 21 00 00 39 ES CD 71 AD Dl CD Bl E4

• INSTRU52/FIX - patch MCS2/CMD to correct initialization of nested structures
• RND - 05/24/87
DlC,A6=21 08 00 39 6E 26 00 7D B7 C4 B4 AB ES:FlC,A6=FS 21 00 00 39 ES CD B4 AB Dl CD F9 ES

• INSTRU60/FIX - patch MC60/CMD to correct initialization of nested structures
, RND - 05/24/87
D23,9E=21 08 00 39 6E 26 00 7D B7 C4 E9 91 E5:F23,9E=FS 21 00 00 39 ES CD E9 91 Dl CD E6 DB

• INSTRU61/FIX - patch MC61/CMD to correct initialization of nested structures
• RND - 05/24/87
D22,1A=21 08 00 39 6E 26 00 7D B7 C4 60 81 ES:F22,1A=FS 21 00 00 39 ES CD 60 81 Dl CD 61 B8

• INSTRU62/FIX - patch MC62/CMD to correct initialization of nested structures
• RND - 05/24/87
DlC,Cl=21 08 00 39 6E 26 00 7D B7 C4 CF 7F ES:FlC,Cl=FS 21 00 00 39 ES CD CF 7F Dl CD BA Cl

• KSMA/FIX - 03/30/87 - Patch to LDOS 5.3 KSM/FLT
• Apply via; PATCH KSM/FLT.FILTER KSMA
D00,60=2A,FC,4D,Ol,47:F00,60=FD 6E 02 01 Sl:DOO,BD=59:F00,BD=57

, PATCH to correct MAPPER (24-0ct-84) from PRO-MACH2 - M, Houde
• MAPPER displays 4 granules in a row, which means that when disk allocation is Sor more
• granules/cylinder, 2 lines/cyl are used, and 9 cylinders are displayed on the screen,
• whereas 18 cylinders are displayed when only one line/cyl is needed, filling the screen
• in each case. Unfortunately, when allocation is exactly 4 grans/cyl, only 9 cylinders are
• showed, leaving half of the screen blank, Cure is easy, as the culprit is an erroneous
• CP 4;JR C,n which should be CP S;JR C,n (X'335:S'-X'335C')
D03,74=05:F03,74=04

, UNREM63 for UNREMOVE (12-May-84) - M, Houde
• This patch enables UNREMOVE/CMD (version l,Oa) from PRO-ESP to operate
• on 6.3 and 5.3 disks, as well as 6.x and 5.1 disks •
• This patch must be added as an X-type patch, as no room is available inside the file.
X'311D'=CD CO 35 ; was 'E E6 07
X'3SC0'=3A CD 36 CB SF 20 04 7E E6 07 C9 7D C6 11 6F 7E
X'3SDO'=E6 lF 00 C6 SO CD 2E 31 OE 20 3E 02 EF 3E 02 EF
X'3SE0'=2B 7E E6 F8 OF OF OF CD 2E 31 OE 3A 3E 02 EF 7E
X'3SFO'=E6 07 23 4E CB 21 17 CB 21 17 CB 21 17 D6 SO C9

• ALTDSK63 for ALTDISK (7-Feb-85)
• change DOS7 6.x to 6.3 (X'32Dl')
D03,2D=33:F03,2D=78
• GAT set DOS version to 63, set bit 3 of byte OCDH (X'376C')
D07,DE=63 00 8B:F07,DE=62 00 83
• Boot sector 2, DOS version (X'39Cl')
D0A,3B=63:FOA,3B=62

The Patch Corner - 100 - The Patch Corner

Volume I.iv THE MISOSYS QUARTERLY - SPRING 1987

• NAME63 for NAME (19-Jul-84)
• Change check for year<SS ti year<lOO (X'30C8')
DOO,FD=64:FOO,FD=S8
• Change 6.x to 6.3 (X'31E7')
D02,20=33:F02,20=78
• Since TRSDOS 6.2 Boot sector 2, bytes x'l8'-x'lF' are no longer used for
• date storage, but rather Levelxx (system disks), it would be better to
• prevent NAME from changing this area, Change JR Z, to JR (x'3165')
D01,9E=l8:F01,9E=28 .

• MR.S512/FIX - 05/19/87 - Corrects DW expansions with mixed modes
• Apply via, PATCH MRAS MRS512
D02,46=7C 8F:F02,46=75 8F:DlC,03=75 8F:FlC,03=C4 62:X'8F75'=AF 32 9B 65 C3 C4 62

• MRS612/FIX - 05/15/87 - Corrects DW expansions with mixed modes
• Apply via, PATCH MR.AS MRS512
D02,2A=67 62:F02,2A=60 62:DlB,C6=60 62:FlB,C6=BB 35:X'6260'=AF 32 92 38 C3 BB 35

• PDS553/FIX - Patch to PaDS's BUILD module for 5.3
• Apply via; PATCH PDS,PDS PDS553
Dl5,Dl=70 3D 52 45 29 OD 00 00 00:Fl5,Dl=61 3D 2C 70 3D 52 45 29 OD

PaDS: PATCH PDS.PDS (D20,75=20 30:F20,75=05 20)

PRO-PaDS: PATCH PDS.PDS (D20,55=20 30:F20,55=05 20)

• RSH61/FIX - 05/27/87 - Patch to RSHARD6/DCT - Apply via, PATCH RSHARD6/DCT RSH61
• enable JCL

Volume I.iv

DOO,Cl=C3 Cl 68:FOO,Cl=B7 20 27:D08,ED=B7 C2 DF 60 C3 BB 60:F08,ED=00 00 00 00 00 00 00
• ASCII to binary conversion
D03,E9=C3 C8 68:F03,E9=83 18 E6:D08,F4=83 57 C3 BA 63:F08,F4=00 00 00 00 00
• check step value for initialization
D00,D6=06:FOO,D6=6E

• RSH61/FIX - 05/27/87 - Patch to RSHARD6/DCT - Apply via, PATCH RSHARD6/DCT RSH61
• test direct invocation
D00,1A=C3 09 39:FOO,lA=CA 81 35:D09,39=CB SF CA 81 35 C3 11 30:F09,39=00 00 00 00 00 00 00 00
• enable JCL
D00,9C=C3 11 39:F00,9C=B7 20 27:D09,4l=B7 C2 BA 30 C3 96 30:F09,41=00 00 00 00 00 00 00
• ASCII to binary conversion
D04,0C=C3 18 39:F04,0C=83 18 E6:D09,48=83 57 C3 DD 33:F09,48=00 00 00 00 00
• check step value for initialization
DOO,Bl=06:FOO,Bl=6E

• RSH62/FIX - Patch to RSHARD6/DCT - 06/11/87 - Apply via, PATCH RSHARD6/DCT RSH62
• Corrects installation into high memory when low 1s not available
D02,CD=CD lD 39:F02,CD=22 2B 35
D09,4D=21 00 00 45 3E 64 EF 22 2B 35 C9:F09,4D=OO 00 00 00 00 00 00 00 00 00 00

• SDAT53/FIX - 04/14/87 - Patch to EnhComp SUPPORT/DAT
Corrects USING on certain single/double fractional values

• For LDOS 5.3; PATCH SUPPORT/DAT (D60,14=21:F60,14=C2)
For LDOS 5.1; PATCH SUPPORT/DAT (D60,14=21)

• SDAT62/FIX - 04/14/87 - Patch to PRO-EnhComp SUPPORT/DAT
• Corrects USING on certain single/double fractional values
• PATCH SUPPORT/DAT (DSF,BF=21:FSF,BF=C2)

The Patch Corner - 101 - The Patch Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987

• SYS6D/FIX - 04/23/87 - Patch to LDOS 5.3 ROUTE Command
• Corrects re-use of previous buffer/FCB
• Apply via;
PATCH SYS6/SYS.SYSTEM (D36,31=6F:F36,31=67)

• SYS6E/FIX - 06/18/87 - Patch to DIR
• Corrects obscure problem in space calc
• Apply via, PATCH SYS6/SYS.SYSTEM SYS6E
DOA,4D=FF
FOA,4D=OO

• TED5B/FIX - 05/19/87 - Patch to LDOS TED
• Fixes text deletion on LOAD if DELETE mode is active
• Apply via, PATCH TED.UTILITY TED5B
D04,CF=DB
F04,CF=B9

• TED6C/FIX - 05/19/87 - Patch to LS-DOS TED
• Fixes text deletion on LOAD if DELETE mode is active
• Apply via, PATCH TED.UTILITY TED6C
D04,Bl=AC
F04,B1=8A

• INSTALL3/JCL Thomas L Keister Jr
• LDOS 5.3 change by Luis M. Garcia-Barrio

8/N/1 #4, 215/848-5728

15 Jun 83
7 May 87

• Following a Global RESET, this JCL file will install
• SUPERLOG into a minimal floppy-based system including
• KI/DVR, Type-ahead, and JKL screen print •

• Valid for MISOSYS' LDOS 5. 3 •
• For LDOS 5.1.3 restore the original PATCH listed below.

SUPERLOG series 'L'.
//PAUSE Type <ENTER> to proceed. <BREAK) to exit •
• Installing SUPERLOG. Screen Storage to MEMORY.
SUPERLOG (LOAD,MEM)
• Configuring Sys tern •••
SET *KI TO KI/DVR (TYPE,JKL)
VERIFY (OFF)
• Disable (shift)<BREAK) option of LDOS.
MEMORY (A=X'44DD' ,B=X'D4')

• The LDOS 5.1.3 patch was PATCH SYSO/SYS.SYSTEM:O (D03,37=D4)
• The new LDOS 5.3 patch follows:

PATCH SYSO/SYS.SYSTEM:O (D03,2F=D4:F03,2F=CD)

• Now add any additonal drivers, filters, options you desire •
• Then type: SYSTEM (SYSGEN) to save this configuration •
• SUPERLOG will be operational each time you reBOOT.
//EXIT

The Patch Corner - 102 -

Volume I. iv

The Patch Corner

Volume I. iv THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

[Editor Note: Contrary to The Blurb,
room to squeeze in this section]

I found Other than these situations, messages should
not be deleted. Thanks!

Our Compuserve Forum - PCS49

FORUM commands

The following commands may be entered at the
main forum FUNCTIONS menu. To find out more
about a particular command, enter the command
at the prompt below. If you'd like a listing
of the entire online HELP displayed at your
terminal, enter " " (three periods without
the quotes), at the next prompt. The listing
is approximately 5 pages long. Remember to use
CONTROL-A to stop the output from scrolling,
and a CONTROL-Q to start the output. For
general information about using a forum, type
"INstructions" at the main forum FUNCTIONS
menu,

Please note that "H" may be
Forum menus and prompts
specific to that menu
information is available

entered at most
to obtain help

or prompt, More
for:

INstruc tions Leave Read
Scanning BROwse conference
DLibrary Bulletins MDirectory
SSubtopic OP tions Help
EXit USTatus SENd
NEW Information Userlog
SNames LNames VERsion
High RForward RReverse
RThread RSearch RMarked
Rindividual SThread WHO
DAY TIME

Forum policy on deleting messages:

(Fm: LDOS Support jjkd) (1) Please delete all
(P)rivate messages after reading. A (P)rivate
message is denoted by the characters (p) in
the header. (P)rivate messages don't help the
general membership, and do take a valuable
message slot.

(2) Delete all
"Thanks!" types
them. This will
another message,
there along with
leave the message.

single line or quickie
of messages after you read
free up a message slot for
If any information is in

the thanks, go ahead and
It may help other readers.

(3) Of course, if you are not satisfied with
the appearance or content of one of your
messages after sending it, go ahead and delete
it when posting another copy.

SIG paging

(Fm: LDOS Support jjkd) You may temporarily
set paging off via the command: SET PAG OFF at
the main· Forum prompt. To turn paging off
permanently, GO CIS-9 and set your terminal
parameters to have paging off. While you are
there, you can set the proper number of lines
per page and your terminal type if desired.

Garbage Messages

(Fm: LDOS Support jjkd) You can delete a
message that is to or from yourself by using
the Delete command from the main Forum prompt
or menu. You will then be prompted for a
message number to delete, Supply the correct
number and away she goes, You will not be
allowed to delete a message--iLy~µ-_4re not the

; -------··-"-·--
sender or recipient. / !3 YTJ T Fi u i··, \

p (). ~ (:. f
Problems accessing a BBS j PADSTO\/,_c k I

~.,,_ ___ ,._ --,~------.J'
(Fm: LDOS Support jjkd) Assuming that you are
using the exact same equipment to call our
Compuserve forum as a BBS you are having
problems with, then there are three possible
sources of problem:

(1) Phone lines from you to them. Since your
dialed route to CompuServe is likely not the
same as to the BBS, there easily could be a
problem from you to them, If long distance,
try another carrier (AT$T, SPRINT, etc). If
not, try taking your equipment to a friend's
house who lives more than five miles or so
from you, and see if that makes a difference.

(2) Baud rate, parity, stop bits, modem mode.
Make sure that you match what the other end is
expecting. Most common is seven bit word, even
parity and one stop bit, You are limited to
300 baud, and should be in originate mode.

(3) Make sure that the other end really is a
computer with a modem. When I called the
number you gave ("insert number here"), I got
a message indicating that the number was
disconnected. Always try calling with a
regular phone in addition to a modem to make
sure that a person or message isn't answering.
Repeatedly calling a normal residential phone
number mistakenly thought to be or published
as a BBS number can cause untold grief at the
other end.

Our Compuserve Forum - 103 - Our Compuserve Forum

Volume I. iv

Unsqueezing Files

THE MISOSYS QUARTERLY - SPRING 1987 Volume I. iv

(Fm: John Bode) How do you unsqueeze a file
that is squeezed when you download it and then
it won't run? Please I need to know how to ·
undo the things that you do!

(Fm: Michael Johnston) John, to unsqueeze or
de-arc a program you must have one of the ·
several archive or squeeze utilities. They
will extract the file to its usable condition.
Just download the following: (1) ARC4/CMD, (2)
XARC4/CMD, (3) USQ4/CMD, (4) LU4/CMD, (5)
ARCH4/CMD.

The first two are the newest and preferred
files. the middle two are the old style that
are used rather infrequently now. The last one
also fits into this catagory as it has been
replaced by arc4/cmd, If you don't want to
download all that stuff (who can blame you?)
Just send a disk in a mailer with a return
address label and postage to: Michael R.
Johnston, 155 DeKalb Ave, Brooklyn , N,Y.
11217 Better send two disks and I will copy
ALL the files you need onto them OK?

(Fm: LDOS Support
file has been made
as follows:

jjkd) It depends on how the
smaller. The breakdown is

Ext Program needed

ACH ARCH3 or ARCH4, depending on OS
ARC XARC4 or ARC4
?Q? USQ
LBR LU and possibly USQ
LQR Both LU and USQ
ESS PROCES, not PRO-GESS

The above utilities are available for TRSDOS 6
in DL 6, with some new arrivials here in DL O.

Our Compuserve Forum - 104 -

1111111

,, 111' I I I I• II I I I
.... 11 11

111 '••111•11 , , I 11

I cllfll •,

1111,,

11111111111111

The LOOS 5.3 upgrade kit is now available to take your
Model Ill or 4 (in 3 mode) to the year 2000. LOOS 5.3
provides complete media compatibility with LS-DOS
6.3, the newest Model 4 DOS released by Logical
Systems, Inc. With LOOS 5.3, you can add 12 years to
the life of your software. Just look at these improve
ments over version 5.1.4!

DOS Enhancements: Only $34.95!
• Date support through December 31, 1999; time stamping for files.
• Enhancements to LOOS now free up 14 additional file slots for data

disks.
• On-line HELP facility for DOS and BASIC - 117 screens of help.

LIBRARY Enhancements:

• New FORMS, lets you change printer filter parameters.
• New SETCOM, lets you change RS-232 parameters.
• Improvements to UST add paged displays, full-screen hex mode,

and flexible tab expansion.
• MEMORY displays directory of terminate and stay resident modules.
• SYSTEM lets you direct the SYSGEN to any drive; adds a flexible

drive swap subcommand; SMOOTH for faster disk throughput.
• DI Rectory display enhanced with time stamps, file EOF, and more.
• We've also improved : AUTO, COPY, CREATE, DEBUG, DEVICE, DO,

FREE, KILL, and ROUTE; and added CLS and TOF commands.

UTILITY Enhancements:

• We've added TED, a full screen text editor for ASCII files.
• LCOMM now gives you access to LOOS library commands while in

terminal mode.
• PATCH supports D&F patch lines with REMOVE capabilities.
• DATECONV has been added to convert older disks to the new date

convention.

BASIC Enhancements:

• Improvement to line editing with the addition of line COPY and
MOVE.

• Very flexible INPUT@ added for screen fielded·input.
• We've added a CMD" V" to dump a list of active variables with

values - including arrays.

For $34.95(+S&H), the LOOS 5.3 upgrade kit includes a DOS disk and
documentation covering the enhancements. Specify Model 3/4 or
MAX-80.
P.S. - Don't return you old disk!

MISOSYS, Inc.
POBox239
Sterling, VA 22170-0239
703-450-4181 MC. VISA.CHOICE
Orders Only! 800-MISOSYS 1P·5P EST Monday•Frid•y

VA residents add sales tax. S&H: US $2, Canad• $3, Foreign $6.

Our Compuserve Forum

